OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 16 — Jun. 1, 2009
  • pp: 3075–3083

Acetylene measurement in flames by chirp-based quantum cascade laser spectrometry

Zachary R. Quine and Kevin L. McNesby  »View Author Affiliations

Applied Optics, Vol. 48, Issue 16, pp. 3075-3083 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (885 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have designed and characterized a mid-IR spectrometer built around a pulsed distributed-feedback quantum cascade laser using the characteristic frequency down-chirp to scan through the spectral region 6.5 cm 1 spectral region. The behavior of this chirp is extensively measured. The accuracy and detection limits of the system as an absorption spectrometer are demonstrated first by measuring spectra of acetylene through a single pass 16 cm absorption cell in real time at low concentrations and atmospheric pressure. The smallest detectable peak is measured to be 1.5 × 10 4 absorbance units, yielding a minimum detectable concentration length product of 2.4 parts per million meter at standard temperature and pressure. This system is then used to detect acetylene within an ethylene–air opposed flow flame. Measurements of acetylene content as a function of height above the fuel source are presented, as well as measurements of acetylene produced in fuel breakdown as a function of preinjection fuel temperature.

© 2009 Optical Society of America

OCIS Codes
(300.1030) Spectroscopy : Absorption
(300.6260) Spectroscopy : Spectroscopy, diode lasers
(300.6340) Spectroscopy : Spectroscopy, infrared
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Lasers and Laser Optics

Original Manuscript: October 30, 2008
Revised Manuscript: April 24, 2009
Manuscript Accepted: May 1, 2009
Published: May 26, 2009

Zachary R. Quine and Kevin L. McNesby, "Acetylene measurement in flames by chirp-based quantum cascade laser spectrometry," Appl. Opt. 48, 3075-3083 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Flagan and J. Seinfeld, “Particle formation in combustion,” in Fundamentals of Air Pollution Engineering (Prentice-Hall, 1988), pp. 358-390.
  2. K. McNesby, A. W. Miziolek, T. Nguyen, F. C. Delucia, R. R. Skaggs, and T. A. Litzinger, “Experimental and computational studies of oxidizer and fuel side addition of ethanol to opposed flow air/ethylene flames,” Combust. Flame 142, 413-427 (2005). [CrossRef]
  3. S. J. Harris and A. M. Weiner, “Surface growth of soot particles in premixed ethylene/air flames,” Combust. Sci. Technol. 31, 155-167 (1983). [CrossRef]
  4. S. J. Harris and A. M. Weiner, “Determination of the rate constant for soot surface growth,” Combust. Sci. Technol. 32, 267-275 (1983). [CrossRef]
  5. A. A. Kosterev and F. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38, 582-591 (2002). [CrossRef]
  6. E. Normand, G. Duxbury, and N. Langford, “Characterisation of the spectral behavior of pulsed quantum cascade lasers using a high resolution Fourier transform infrared spectrometer,” Opt. Commun. 197, 115-120 (2001). [CrossRef]
  7. E. Normand, M. McCulloch, G. Duxbury, and N. Langford, “Fast, real-time spectrometer based on a pulsed quantum cascade laser,” Opt. Lett. 28, 16-18 (2003). [CrossRef] [PubMed]
  8. T. Beyer, M. Braun, and A. Lambrecht, “Fast gas spectroscopy using pulsed quantum cascade lasers,” J. Appl. Phys. 93, 3158-3160 (2003). [CrossRef]
  9. K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Sensitive absorption spectroscopy with a room temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23, 219-221 (1998). [CrossRef]
  10. D. Weidmann, A. A. Kosterev, C. Roller, R. F. Curl, M. P. Fraser, and F. K. Tittel, “Monitoring of ethylene by a pulsed quantum cascade laser,” Appl. Opt. 43, 3329-3334 (2004). [CrossRef] [PubMed]
  11. A. A. Kosterev, F. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Trace-gas detection in ambient air with a thermoelectrically cooled pulsed quantum-cascade distributed feedback laser,” Appl. Opt. 39, 6866-6872 (2000). [CrossRef]
  12. “Alpes Lasers Literature,” http://www.alpeslasers.ch/Publications.html.
  13. A. Müller, M. Beck, J. Faist, U. Oesterle, and M. Ilegems, “Electrically tunable room-temperature quantum-cascade lasers,” Appl. Phys. Lett. 75, 1509-1511 (1999). [CrossRef]
  14. T. Beyer, M. Braun, S. Hartwig, and S. Lambrechtin, “Linewidth measurement of free-running, pulsed, distributed feedback quantum cascade lasers,” J. Appl. Phys. 95, 4551-4554 (2004). [CrossRef]
  15. L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith. J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005). [CrossRef]
  16. D. Jacquemart, J. -Y. Mandin, V. Dana, C. Claveau, J. Vander Auwera, M. Herman, L. S. Rothman, L. Régalia-Jarlot, and A. Barbe, “The IR acetylene spectrum in HITRAN: update and new results,” J. Quant. Spectrosc. Radiat. Transfer 82, 363-382 (2003). [CrossRef]
  17. Y. Kabbadj, M. Herman, G. Di Lonardo, L. Fusina, and J. W. C. Johns, “The bending energy levels of C2H2,” J. Mol. Spectrosc. 150, 535-565 (1991). [CrossRef]
  18. M. T. McCulloch, G. Duxbury, and N. Langford, “Observation of saturation and rapid passage signals in the 10.25 micron spectrum of ethylene using a frequency chirped quantum cascade laser,” Mol. Phys. 104, 2767-2779 (2006). [CrossRef]
  19. G. Duxbury, M. Langford, and M. McCulloch, “Rapid passage induced population transfer and coherences in the 8 micron spectrum of nitrous oxide,” Mol. Phys. 105, 741-754 (2007). [CrossRef]
  20. C. E. Baukal, Jr., and R. E. Schwartz, The John Zink Combustion Handbook (CRC Press, 2001). [CrossRef]
  21. R. G. Daniel, K. L. McNesby, and A. W. Miziolek, “Applications of tunable diode laser diagnostics for temperature and species concentration profiles of inhibited low-pressure flames, Appl. Opt. 35, 4018-4025 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited