OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 17 — Jun. 10, 2009
  • pp: 3120–3128

Efficient encrypting procedure using amplitude and phase as independent channels to display decoy objects

John Fredy Barrera and Roberto Torroba  »View Author Affiliations


Applied Optics, Vol. 48, Issue 17, pp. 3120-3128 (2009)
http://dx.doi.org/10.1364/AO.48.003120


View Full Text Article

Enhanced HTML    Acrobat PDF (1088 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Objects acting as inputs of encrypting optical systems can be regarded as having two independent channels: amplitude and phase. In this context, we can use the term “complex objects” to refer these input objects. In this work we explore the way to perform an undercover operation where one channel (amplitude) is used to depict decoy information to confuse intruders, while the other (phase) operates with the true information. Besides, we use the Gerchberg–Saxton algorithm to transform the amplitude and phase encrypted information into pure phase data, therefore increasing the efficiency of the technique as only a single matrix containing these data needs to be sent. Finally, as an example to show the potential of the method, we combine the separate channels in a multiplexing technique with the Gerchberg–Saxton algorithm to generate an efficient multiuser secure process.

© 2009 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(070.4560) Fourier optics and signal processing : Data processing by optical means
(100.0100) Image processing : Image processing
(100.4998) Image processing : Pattern recognition, optical security and encryption

ToC Category:
Image Processing

History
Original Manuscript: December 10, 2008
Revised Manuscript: April 20, 2009
Manuscript Accepted: May 7, 2009
Published: June 1, 2009

Citation
John Fredy Barrera and Roberto Torroba, "Efficient encrypting procedure using amplitude and phase as independent channels to display decoy objects," Appl. Opt. 48, 3120-3128 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-17-3120


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Réfrégier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20, 767-769 (1995). [CrossRef] [PubMed]
  2. B. Javidi, G. Zhang, and J. Li, “Encrypted optical memory using double-random phase encoding,” Appl. Opt. 36, 1054-1058 (1997). [CrossRef] [PubMed]
  3. O. Matoba and B. Javidi, “Encrypted optical memory system using three-dimensional keys in the Fresnel domain,” Opt. Lett. 24, 762-764 (1999). [CrossRef]
  4. E. Tajahuerce and B. Javidi, “Encrypting three-dimensional information with digital holography,” Appl. Opt. 39, 6595-6601 (2000). [CrossRef]
  5. R. Arizaga, R. Henao, and R. Torroba, “Fully digital encryption technique,” Opt. Commun. 221, 43-47 (2003). [CrossRef]
  6. J. F. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, “Multiplexing encrypted data by using polarized light,” Opt. Commun. 260, 109-112 (2006). [CrossRef]
  7. J. F. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, “Multiple image encryption using an aperture-modulated optical system,” Opt. Commun. 261, 29-33 (2006). [CrossRef]
  8. N. Takai and Y. Mifune, “Digital watermarking by a holographic technique,” Appl. Opt. 41, 865-873 (2002). [CrossRef] [PubMed]
  9. R. Arizaga and R. Torroba, “Validation through a binary key code and a polarization sensitive digital technique,” Opt. Commun. 215, 31-36 (2003). [CrossRef]
  10. H. Kim and Y. H. Lee, “Optimal watermarking of digital hologram of 3-D object,” Opt. Express 13, 2881-2886 (2005). [CrossRef] [PubMed]
  11. N. Towghi, B. Javidi, and Z. Luo, “Fully phase encrypted image processor,” J. Opt. Soc. Am. A 16, 1915-1927 (1999). [CrossRef]
  12. B. Javidi, N. Towghi, N. Maghzi, and S. C. Verrall, “Error-reduction techniques and error analysis for fully phase- and amplitude-based encryption,” Appl. Opt. 39, 4117-4130(2000). [CrossRef]
  13. X. Tan, O. Matoba, T. Shimma, K. Kuroda, and B. Javidi, “Secure optical storage that uses fully phase encryption,” Appl. Opt. 39, 6689-6694 (2000). [CrossRef]
  14. P. C. Mogensen and J. Glückstad, “phase-only optical encryption,” Opt. Lett. 25, 566-568 (2000). [CrossRef]
  15. N. K. Nishchal, J. Joseph, and K. Singh, “Optical phase encryption by phase contrast using electrically addressed spatial light modulator,” Opt. Commun. 217, 117-122(2003). [CrossRef]
  16. J. F. Barrera, M. Tebaldi, R. Torroba, and N. Bolognini, “Multiplexing encryption technique by combining random amplitude and phase masks,” Optik (Jena) 120, 351-355 (2009). [CrossRef]
  17. T. Nomura and B. Javidi, “Optical encryption using a joint transform correlator architecture,” Opt. Eng. 39, 2031-2035(2000). [CrossRef]
  18. T. Nomura and B. Javidi, “Optical encryption system with a binary key code,” Appl. Opt. 39, 4783-4787 (2000). [CrossRef]
  19. N. K. Nischal, J. Joseph, and K. Singh, “Fully phase encryption using fractional Fourier transform,” Opt. Eng. 42, 1583-1588 (2003). [CrossRef]
  20. R. W. Gerchberg and W. O. Saxton, “Phase determination from image and diffraction plane pictures in the electron microscope,” Optik (Jena) 34, 275-284 (1971).
  21. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Jena) 35, 227-246 (1972).
  22. C. H. Yeh, H. T. Chang, H. C. Chien, and C. J. Kuo, “Design of cascaded phase keys for a hierarchical security system,” Appl. Opt. 41, 6128-6134 (2002). [CrossRef] [PubMed]
  23. X. F. Meng, L. Z. Cai, X. L. Yang, X. X. Shen, and G. Y. Dong, “Information security system by iterative multiple-phase retrieval and pixel random permutation,” Appl. Opt. 45, 3289-3297 (2006). [CrossRef] [PubMed]
  24. M. Singh and A. Kumar, “Optical encryption and decryption using a sandwich random phase diffuser in the Fourier plane,” Opt. Eng. 46, 055201 (2007). [CrossRef]
  25. M. Singh, A. Kumar, and K. Singh, “Multiplexing in optical encryption by using an aperture system and a rotating sandwich random phase diffuser in the Fourier plane,” Opt. Lasers Eng. 46, 243-251 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited