OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 17 — Jun. 10, 2009
  • pp: 3184–3191

Tilt scanning interferometry: a numerical simulation benchmark for 3D metrology

Gustavo E. Galizzi, Pablo D. Ruiz, and Guillermo H. Kaufmann  »View Author Affiliations

Applied Optics, Vol. 48, Issue 17, pp. 3184-3191 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (752 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Tilt scanning interferometry (TSI) is a novel experimental technique that allows the measurement of multicomponent displacement fields inside the volume of a sample. In this paper, we present a simulation model that allows for the evaluation of the speckle fields recorded in TSI when this technique is applied to the analysis of semitransparent scattering materials. The simulation is based on the convolution of the optical impulsive response of the optical system and the incident field amplitude. Different sections of the simulated imaging system are identified and the corresponding optical impulsive responses are determined. To evaluate the performance of the proposed model, a known internal displacement field as well as the illumination and detection strategies in a real TSI system are numerically simulated. Then, the corresponding depth-resolved out-of-plane and in-plane changes of phase are obtained by means of the data processing algorithm implemented in a TSI system.

© 2009 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(120.2650) Instrumentation, measurement, and metrology : Fringe analysis
(120.4290) Instrumentation, measurement, and metrology : Nondestructive testing
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(120.6150) Instrumentation, measurement, and metrology : Speckle imaging
(120.6160) Instrumentation, measurement, and metrology : Speckle interferometry

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: February 23, 2009
Manuscript Accepted: April 13, 2009
Published: June 5, 2009

Gustavo E. Galizzi, Pablo D. Ruiz, and Guillermo H. Kaufmann, "Tilt scanning interferometry: a numerical simulation benchmark for 3D metrology," Appl. Opt. 48, 3184-3191 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. I. Friswell and J. E. Mottershead, Finite Model Updating in Structural Dynamics (Springer, 1995).
  2. M. Grediac, “Principe des travaux virtuels et identification,” C. R. Acad. Sci. Ser. II 309, 1-5 (1989).
  3. F. Pierron, S. Zhavoronok, and M. Grediac, “Identification of the through-thickness properties of thick laminated tubes using the virtual fields method,” Int. J. Solids Struct. 37, 4437-4453 (2000). [CrossRef]
  4. M. Grediac, F. Pierron, S. Avril, and E. Toussaint, “The virtual fields method for extracting constitutive parameters from full-field measurements: a review,” Strain 42, 233-253 (2006). [CrossRef]
  5. R. Jones and C. Wykes, Holographic and Speckle Interferometry (Cambridge University, 1989).
  6. P. K. Rastogi, Digital Speckle Pattern Interferometry and Related Techniques (Wiley, 2001).
  7. R. Rodriguez-Vera, D. Kerr, and F. Mendoza-Santoyo, “Electronic speckle contouring,” J. Opt. Soc. Am. A 9, 2000-2008(1992). [CrossRef]
  8. P. Jacquot, “Speckle interferometry: a review of the principal methods in use for experimental mechanics applications,” Strain 44, 57-69 (2008). [CrossRef]
  9. A. Giraudeau, B. Guo, and F. Pierron, “Stiffness and damping identification from full field measurements on vibrating plates,” Exp. Mech. 46, 777-787 (2006). [CrossRef]
  10. S. Avril and F. Pierron, “General framework for the identification of constitutive parameters from full-field measurements in linear elasticity,” Int. J. Solids Struct. 44, 4978-5002 (2007). [CrossRef]
  11. S. Avril, F. Pierron, M. A. Sutton, and J. H. Yan, “Identification of elasto-visco-plastic parameters and characterization of Luders behavior using digital image correlation and the virtual fields method,” Mech. Mater. 40, 729-742 (2008). [CrossRef]
  12. T. Abe, Y. Mitsunaga, and H. Koga, “Photoelastic computer-tomography--a novel measurement method for axial residual-stress profile in optical fibers,” J. Opt. Soc. Am. A 3, 133-138 (1986). [CrossRef]
  13. H. Aben, A. Errapart, L. Ainola, and J. Anton, “Photoelastic tomography for residual stress measurement in glass,” in Optical Metrology in Production Engineering, (SPIE, 2004) pp. 1-11.
  14. D. D. Steele, T. L. Chenevert, A. R. Skovoroda, and S. Y. Emelianov, “Three-dimensional static displacement stimulated echo NMR elasticity imaging,” Phys. Med. Biol. 45, 1633-1648 (2000). [CrossRef] [PubMed]
  15. M. T. Draney, R. J. Herfkens, T. J. R. Hughes, N. J. Pelc, K. L. Wedding, C. K. Zarins, and C. A. Taylor, “Quantification of vessel wall cyclic strain using cine phase contrast magnetic resonance imaging,” Ann. Biomed. Eng. 30, 1033-1045 (2002). [CrossRef] [PubMed]
  16. B. K. Bay, T. S. Smith, D. P. Fyhrie, and M. Saad, “Digital volume correlation: three-dimensional strain mapping using x-ray tomography,” Exp. Mech. 39, 217-226 (1999). [CrossRef]
  17. J. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express 3, 199-211 (1998). [CrossRef] [PubMed]
  18. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography--principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003). [CrossRef]
  19. K. Gastinger, S. Winther, and K. D. Hinsch, “Low-coherence speckle interferometer (LCSI) for characterization of adhesion in adhesive-bonded joints,” Proc. SPIE 4933, 59-65 (2003). [CrossRef]
  20. G. Gülker, K. D. Hinsch, and A. Kraft, “Low-coherence ESPI in the investigation of ancient terracotta warriors,” Proc. SPIE 4933, 53-58 (2003). [CrossRef]
  21. P. D. Ruiz, J. M. Huntley, and A. Maranon, “Tilt scanning interferometry: a novel technique for mapping structure and three-dimensional displacement fields within optically scattering media,” Proc. R. Soc. A 462, 2481-2502 (2006). [CrossRef]
  22. J. M. Coupland and J. Lobera, “Holography, tomography and 3D microscopy as linear filtering operations,” Meas. Sci. Technol. 19, 074012 (2008). [CrossRef]
  23. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  24. S. Equis and P. Jacquot, “Simulation of speckle complex amplitude: advocating the linear model,” Proc. SPIE 6341, 634138.1-634138 (2006).
  25. A. Dávila, G. H. Kaufmann, and D. Kerr, “Digital processing of ESPI addition fringes,” in Fringe '93, W. Jüptner and W. Osten, eds. (Akademie Verlag, 1993), pp. 339-346.
  26. D. C. Ghiglia and M. D. Pritt, Two Dimensional Phase Unwrapping: Theory, Algorithms and Software (Wiley, 1998).
  27. P. D. Ruiz, G. H. Kaufmann, and G. E. Galizzi, “Unwrapping of digital speckle pattern interferometry phase maps by use of a minimum L0-norm algorithm,” Appl. Opt. 37, 7632-7644(1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited