OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 17 — Jun. 10, 2009
  • pp: 3192–3203

Robust multiparameter method of evaluating the optical and thermal properties of a layered tissue structure using photothermal radiometry

Anna Matvienko, Andreas Mandelis, and Stephen Abrams  »View Author Affiliations

Applied Optics, Vol. 48, Issue 17, pp. 3192-3203 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (601 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The thermal and optical properties of multilayered dental tissue structure, the result of the surface-grown prismless layer on enamel, were evaluated simultaneously using multiparameter fits of photothermal radiometry frequency responses. The photothermal field generated in a tooth sample with near-infrared laser excitation was described using a coupled diffuse-photon-density and thermal wave model. The optical (absorption and scattering) coefficients and thermal parameters (spectrally averaged infrared emissivity, thermal diffusivity and conductivity) of each layer, as well as the thickness of the upper prismless enamel layer, were fitted using a multiparameter simplex downhill minimization algorithm. The results show that the proposed fitting approach can increase robustness of the multiparameter estimation of tissue properties in the case of ill-defined multiparameter fits, which are unavoidable in in vivo tissue evaluation. The described method can readily be used for noninvasive in vitro or in vivo characterization of a wide range of layered biological tissues.

© 2009 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(170.1850) Medical optics and biotechnology : Dentistry
(170.5270) Medical optics and biotechnology : Photon density waves
(170.7050) Medical optics and biotechnology : Turbid media
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: March 31, 2009
Manuscript Accepted: May 1, 2009
Published: June 5, 2009

Virtual Issues
Vol. 4, Iss. 8 Virtual Journal for Biomedical Optics

Anna Matvienko, Andreas Mandelis, and Stephen Abrams, "Robust multiparameter method of evaluating the optical and thermal properties of a layered tissue structure using photothermal radiometry," Appl. Opt. 48, 3192-3203 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331-2336(1989). [CrossRef] [PubMed]
  2. A. Kienle, M. S. Patterson, N. Dognitz, R. Bays, G. Wagnieres, and H. van den Bergh, “Noninvasive determination of the optical properties of two-layered turbid media,” Appl. Opt. 37, 779-791 (1998). [CrossRef]
  3. F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, “In vivo determination of tissue optical properties: application to human brain,” Appl. Opt. 38, 4939-4950 (1999). [CrossRef]
  4. A. Ishimaru, “Diffusion of light in turbid material,” Appl. Opt. 28, 2210-2215 (1989). [CrossRef] [PubMed]
  5. T. J. Farrell, M. S. Patterson, and M. Essenpreis, “Influence of layered tissue architecture on estimates of tissue optical properties obtained from spatially resolved diffuse reflectometry,” Appl. Opt. 37, 1958-1972 (1998). [CrossRef]
  6. F. Martelli, S. Del Bianco, and G. Zaccanti, “Procedure for retrieving the optical properties of a two-layered medium from time-resolved reflectance measurements,” Opt. Lett. 28, 1236-1238 (2003). [CrossRef] [PubMed]
  7. G. Alexandrakis, T. J. Farrell, and M. S. Patterson, “Accuracy of the diffusion approximation in determining the optical properties of a two-layer turbid medium,” Appl. Opt. 37, 7401-7409 (1998). [CrossRef]
  8. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C (Cambridge University Press, 1988).
  9. D. L. Buckley, R. W. Kerslake, S. J. Blackband, and A. Horsman, “Quantitative analysis of multi-slice Gd-DTPA enhanced dynamic MR images using an automated Simplex minimization procedure,” Magn. Res. Med. 32, 646-651(1994). [CrossRef]
  10. S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, and R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37, 1203-1217 (1992). [CrossRef] [PubMed]
  11. A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Measurements of tissue optical properties by time-resolved detection of laser-induced transient stress,” Appl. Opt. 36, 402-415(1997). [CrossRef] [PubMed]
  12. S. A. Telenkov, J.-I. Youn, D. M. Goodman, A. J. Welch, and T. E. Milner, “Non-contact measurement of thermal diffusivity in tissue,” Phys. Med. Biol. 46, 551-558 (2001). [CrossRef] [PubMed]
  13. J. L. Pichardo-Molina, G. Gutierrez-Juarez, R. Huerta-Franco, M. Vargas-Luna, P. Cholico, and J. J. Alvarado-Gil, “Open photoacoustic cell technique as a tool for thermal and thermo-mechanical characterization of teeth and their restorative materials,” Int. J. Thermophys. 26, 243-253 (2005). [CrossRef]
  14. A. Matvienko, A. Mandelis, R. J. Jeon, and S. H. Abrams, “Theoretical analysis of coupled diffuse-photon-density and thermal-wave field depth profiles photothermally generated in layered turbid dental structures,” J. Appl. Phys. 105, 102022 (2009). [CrossRef]
  15. L. Nicoalides, C. Feng, A. Mandelis, and S. H. Abrams, “Quantitative dental measurements by use of simultaneous frequency-domain laser infrared photothermal radiometry and luminescence,” Appl. Opt. 41, 768-777 (2002). [CrossRef]
  16. A. Kakaboura and L. Papagiannoulis, “Bonding of resinous materials on primary enamel, in dental hard tissues and bonding,” in Interfacial Phenomena and Related Properties, T. Eliades and C. Watts, eds. (Springer, 2005) pp. 35-51.
  17. M. Fava, I. S. Watanabe, F. Fava-de-Moraes, and L. R. R. S. da Costa, “Prismless enamel in human non-erapted deciduous molar teeth: a scanning electron microscopy study,” Rev. Odontol. Univ. Sao Paulo 11, 239-243(1997).
  18. A. Mandelis, Diffusion Wave Fields: Mathematical Methods and Green Functions (Springer, 2001), Chap. 10.
  19. Z. A. J. Groenhuis, H. A. Ferwerda, and J. J. Ten Bosch, “Scattering and absorption of turbid materials determined from reflection measurements. 1: Theory,” Appl. Opt. 22, 2456-2462(1983). [CrossRef] [PubMed]
  20. R. R. Anderson, H. Beck, U. Bruggemann, W. Farinelli, S. L. Jacques, and J. A. Parrish, “Pulsed photothermal radiometry in turbid media: internal reflection of backscattered radiation strongly influences optical dosimetry,” Appl. Opt. 28, 2256-2262 (1989). [CrossRef] [PubMed]
  21. T. M. Smith, A. J. Olejniczak, D. J. Reid, R. J. Ferrell, and J. J. Hublin, “Modern human molar enamel thickness and enamel-dentin junction shape,” Arch. Oral Biol. 51, 974-995(2006). [CrossRef] [PubMed]
  22. D. Fried, R. E. Glena, J. D. B. Featherstone, and W. Seka, “Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths,” Appl. Opt. 34, 1278-1285(1995). [CrossRef] [PubMed]
  23. M. Braden, “Heat conduction in normal human teeth,” Arch. Oral Biol. 9, 479-486 (1964). [CrossRef] [PubMed]
  24. W. S. Brown, W. A. Dewey, and H. R. Jacob, “Thermal properties of teeth,” J. Dent. Res. 49, 752-755 (1970). [CrossRef] [PubMed]
  25. A. Matvienko, A. Mandelis, A. Hellen, R. J. Jeon, S. H. Abrams, and B. T. Amaechi, “Quantitative analysis of incipient mineral loss in hard tissues,” Proc. SPIE 7166, 71660C (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited