OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 17 — Jun. 10, 2009
  • pp: 3216–3224

Development of a quantitative optical biochip based on a double integrating sphere system that determines absolute photon number in bioluminescent solution: application to quantum yield scale realization

Ramiz Daniel, Ronen Almog, Yelena Sverdlov, Sharon Yagurkroll, Shimshon Belkin, and Yosi Shacham-Diamand  »View Author Affiliations

Applied Optics, Vol. 48, Issue 17, pp. 3216-3224 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (738 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a new design of an optical biochip based on a double integrating sphere system to quantify the absolute number of the emitted photons or the total photon flux by a whole cell bioluminescent biosensor, for water toxicity detection, based on genetically engineered Escherichia coli bacteria carrying a recA::luxCDABE promoter–reporter fusion. The new design of the double integrating sphere system does not require any external standard light source for calibration of the tested bioluminescent solution and allows a direct determination of the total photon flux of the bioluminescent solution. In our design, we required that the two spheres are symmetric (have the same radius and reflectance) with a surface area larger than the cut cap area between the spheres.

© 2009 Optical Society of America

OCIS Codes
(080.2720) Geometric optics : Mathematical methods (general)
(170.2945) Medical optics and biotechnology : Illumination design

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: January 2, 2009
Revised Manuscript: March 12, 2009
Published: June 5, 2009

Virtual Issues
Vol. 4, Iss. 8 Virtual Journal for Biomedical Optics

Ramiz Daniel, Ronen Almog, Yelena Sverdlov, Sharon Yagurkroll, Shimshon Belkin, and Yosi Shacham-Diamand, "Development of a quantitative optical biochip based on a double integrating sphere system that determines absolute photon number in bioluminescent solution: application to quantum yield scale realization," Appl. Opt. 48, 3216-3224 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. D. Patel, “Biosensors for measurement of analytes implicated in food safety: a review,” Trends Anal. Chem. 21, 96-115 (2002). [CrossRef]
  2. S. Daunert, G. Barrett, J. S. Feliciano, R. S. Shetty, S. Shrestha and W. S. Spencer, “Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes (review),” Chem. Rev. 100, 2705-2738 (2000). [CrossRef]
  3. R. P. Haugland, Handbook of Fluorescent Probes and Research Chemicals (Molecular Probes, 1998).
  4. H. Asakawa, T. Maeda, I. H. Ogawa, and T. Haruyama, “A cellular bioassay for TNT detection using engineered Pseudomonas sp. Strain TM101 for systematic bioremediation,” J. Biol. Phys. Chem. 6, 119-123 (2006). [CrossRef]
  5. R. Popovtzer, T. Neufeld, D. Biran, E. Z. Ron, J. Rishpon, and Y. S. Diamand, “Novel integrated electrochemical nano-biochip for toxicity detection in water,” Nano Lett. 5, 1023-1027 (2005). [CrossRef] [PubMed]
  6. G. K. Turner, “Measurement of light from chemical or biochemical reactions,” in Bioluminescence and Chemiluminescence: Instruments and Applications, K. Van Dyke, ed. (CRC Press, 1985), Vol. I.
  7. K. Salama, H. Eltoukhy, A. Hassibi, and A. El Gamal, “Modeling and simulation of integrated bioluminescence detection platforms,” Biosens. Bioelectron. 19, 1377-1386 (2004). [CrossRef] [PubMed]
  8. M. L. Simpson, G. S. Sayler, G. Patterson, D. E. Nivens, E. K. Bolton, J. M. Rochelle, J. C. Arnott, B. M. Applegate, S. Ripp, and M. A. Guillorn, “An integrated CMOS microluminometer for low-level luminescence sensing in the bioluminescent bioreporter integrated circuit,” Sens. Actuat. B 72, 134-140 (2001). [CrossRef]
  9. R. Daniel, R. Amog, A. Ron, S. Belkin, and Y. S. Diamand, “Modeling and measurement of whole-cell bioluminescent biosensor based on single photon avalanche diode,” Biosens. Bioelectron. 24, 882-887 (2008). [CrossRef]
  10. S. Belkin, “Microbial whole-cell sensing systems of environmental pollutants,” Curr. Opin. Microbiol. 6, 206-212 (2003). [CrossRef] [PubMed]
  11. S. Belkin, D. R. Smulski, S. Dadon, A. C. Vollmer, T. K. Van Dyk, and R. A. Larossa, “A panel of stress-responsive luminous bacteria for the detection of selected toxicants,” Water Res. 31, 3009-3016 (1997). [CrossRef]
  12. J. R. Premkumar, R. Rosen, S. Belkin, and O. Lev, “Sol-gel luminescence biosensors: encapsulation of recombinant E. coli reporters in thick silicate films,” Analyt. Chim. Acta 462, 11-23 (2002). [CrossRef]
  13. Y. Ando, K. Niwa, N. Yamada, T. Irie, T. Enomoto, H. Kubota, Y. Ohmiya, and H. Akiyama, “Development of a quantitative bio/ chemiluminescence spectrometer determining quantum yields: re-examination of aqueous luminol chemiluminescence standard,” Photochem. Photobiol. 83, 1205-1210 (2007). [CrossRef] [PubMed]
  14. J. Lee, “Bacterial bioluminescence. Quantum yields and stoichiometry of the reactants reduced flavin mononucleotide, dodecanal, and oxygen, and of a product hydrogen peroxide,” Biochem. 11, 3350-3359 (1972). [CrossRef]
  15. J. Lee and C. Murphy, “Bacterial bioluminescence: equilibrium association measurements, quantum yields, reaction kinetics, and overall reaction scheme,” Biochem. 20, 2259-2268 (1975).
  16. H. H. Seliger and W. D. McElroy, “Spectral emission and quantum yield of firefly bioluminescence,” Arch. Biochem. Biophys. 88, 136-141 (1960). [CrossRef] [PubMed]
  17. L. Lee and H. H. Seliger, “Absolute spectral sensitivity of phototubes and the application to the measurement of the absolute quantum yields of chemiluminescence and bioluminescence,” Photochem. Photobiol. 4, 1015-1048(1965). [CrossRef] [PubMed]
  18. D. J. O'Kane and J. Lee, “Absolute calibration of luminometers with low-level light standards,” Methods Enzymol. 305, 87-96 (2000). [CrossRef] [PubMed]
  19. Y. Ando, K. Niwa, N. Yamada, T. Enomoto, T. Irie, H. Kubota, Y. Ohmiya, and H. Akiyama, “Firefly bioluminescence quantum yield and color change by pH-sensitive green emission,” Nature Photon. Lett. 2, 44-47 (2008). [CrossRef]
  20. J. A. Jacquez and H. F. Kuppenheim, “Theory of the integrating sphere,” J. Opt. Soc. Am. 45, 460-470 (1955). [CrossRef]
  21. Y. Ohno, “Integrating sphere simulation: application to total flux scale realization,” Appl. Opt. 33, 2637-2646(1994). [CrossRef] [PubMed]
  22. H. L. Tardy, “Matrix method for integrating sphere calculation,” J. Opt. Soc. Am. A 8, 1411-1418 (1991). [CrossRef]
  23. J. W. Pickering, S. A. Prahi, N. V. Wieringen, J. F. Beek, H. J. Sterenborg, and M. J. Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 339-410 (1993). [CrossRef]
  24. G. de Vries, J. F. Beek, G. W. Lucassen, and M. J. Van Gemert, “The effect of light losses in double integrating spheres on optical properties estimation,” IEEE J. Sel. Top. Quantum Electron. 5, 944-947 (1999). [CrossRef]
  25. J. F. Clare, “Comparison of four analytic methods for calculation of irradiance in integrating spheres,” J. Opt. Soc. Am. A 15, 3086-3096 (1998). [CrossRef]
  26. D. G. Goebel, “Generalized integrating sphere theory,” Appl. Opt. 6, 125-128 (1967). [CrossRef] [PubMed]
  27. M. N. Ozisik, Radiative Transfer and Interactions with Conduction and Convection (Wiley, 1973).
  28. R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer, 3rd ed. (Taylor and Francis, 1992).
  29. H. L. Tardy, “Flat-sample and limited field effects in integrating sphere measurements,” J. Opt. Soc. Am. A 5, 241-245(1988). [CrossRef]
  30. L. M. Hanssen, “Effects of restricting the detector field of view when using integrating spheres,” Appl. Opt. 28, 2097-2103(1989). [CrossRef] [PubMed]
  31. A. C. Vollmer, S. Belkin, D. R. Smulski, T. K. Vandyke, and R. A. Larossa, “Detection of DNA damage by use of Escherichia coli carrying recA9::lux, uvrA9::lux, or alkA9::lux reporter plasmids,” Appl. Environ. Microbiol. 63, 2566-2571 (1997). [PubMed]
  32. A. V. Prokhorov, S. N. Mekhontsev, and L. M. Hanssen,” Monte Carlo modeling of integrating sphere reflectometer,” Appl. Opt. 42, 3832-3842 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited