OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 17 — Jun. 10, 2009
  • pp: 3261–3276

Geiger-mode avalanche photodiode ladar receiver performance characteristics and detection statistics

Philip Gatt, Steven Johnson, and Terry Nichols  »View Author Affiliations


Applied Optics, Vol. 48, Issue 17, pp. 3261-3276 (2009)
http://dx.doi.org/10.1364/AO.48.003261


View Full Text Article

Enhanced HTML    Acrobat PDF (1577 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The performance of single and multielement Geiger-mode avalanche photodiode (GM-APD) devices are investigated as a function of the detector’s reset or dead time. The theoretical results, developed herein, capture the effects of both quantum fluctuations and speckle noise and are shown to agree with Monte Carlo simulation measurements. First, a theory for the mean response or count rate to an arbitrary input flux is developed. The probability that the GM-APD is armed is shown to be the ratio of this mean response to the input flux. This arm probability, P A , is then utilized to derive the signal photon detection efficiency (SPDE), which is the fraction of signal photons that are detected. The SPDE is a function of the input flux, the arm probability, and the dead time. When the dead time is zero, GM-APDs behave linearly, P A is unity, and the SPDE theory is simplified to the detector’s effective quantum efficiency. When the dead time is long compared to the acquisition gate time, the theory converges to previously published “infinite” dead-time theories. The SPDE theory is then applied to develop other key ladar performance metrics, e.g., signal-to-noise ratio and detection statistics. The GM-APD detection statistics are shown to converge to that of a linear photon counting device when the combined signal and noise flux is much less than the reset rate. For higher flux levels, the SPDE degrades, due to a decreased arm probability, and the detection probability degrades relative to that of a linear device.

© 2009 Optical Society of America

OCIS Codes
(030.5290) Coherence and statistical optics : Photon statistics
(040.1345) Detectors : Avalanche photodiodes (APDs)

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: October 17, 2008
Revised Manuscript: March 9, 2009
Manuscript Accepted: April 14, 2009
Published: June 8, 2009

Citation
Philip Gatt, Steven Johnson, and Terry Nichols, "Geiger-mode avalanche photodiode ladar receiver performance characteristics and detection statistics," Appl. Opt. 48, 3261-3276 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-17-3261


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335-350 (2002).
  2. M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351-370 (2002).
  3. M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41, 7671-7678 (2002). [CrossRef]
  4. R. M. Marino and W. R. Davis, “Jigsaw: a foliage-penetrating 3D imaging laser radar system,” Lincoln Lab. J. 15, 23-36 (2005).
  5. J. P. Donnelly, E. K. Duerr, K. A. Mcintosh, E. A. Dauler, D. C. Oakley, S. H. Groves, C. J. Vineis, L. J. Mahoney, K. M. Molvar, P. I. Hopman, K. E. Jensen, G. M. Smith, S. Verghese, and D. C. Shaver, “Design considerations for 1.06 μm InGaAsP-InP Geiger-mode avalanche photodiodes,” IEEE J. Quantum Electron. 42, 797-809 (2006). [CrossRef]
  6. P. A. Hiskett, J. M. Smith, G. S. Buller, and P. D. Townsend, “Low-noise single-photon detection at wavelength 1.55 μm,” Electron. Lett. 37, 1081-1082 (2001). [CrossRef]
  7. K. A. McIntosh, J. P. Donnelly, D. C. Oakley, A. Napoleone, S. D. Calawa, L. J. Mahoney, K. M. Molvar, E. K. Duerr, S. H. Groves, and D. C. Shaver, “InGaAsP/InP avalanche photodiodes for photon counting at 1.06 μm,” Appl. Phys. Lett. 81, 2505-2507 (2002). [CrossRef]
  8. D. G. Fouche, “Detection and false-alarm probabilities for laser radars that use Geiger-mode detectors,” Appl. Opt. 42, 5388-5398 (2003). [CrossRef] [PubMed]
  9. G. M. Williams and A. S. Huntington, “Probabilistic analysis of linear mode versus Geiger mode APD FPAs for advanced LADAR enabled interceptors,” Proc. SPIE 6220, 622008 (2006). [CrossRef]
  10. M. E. O'Brien and D. G. Fouche, “Simulation of 3D laser radar systems,” Lincoln Lab. J. 15, 37-60 (2005).
  11. S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, L. L. Zong, J. M. Mahan, L. J. Mahoney, K. M. Molvar, F. J. ODonnell, D. C. Oakley, E. J. Ouellette, M. J. Renzi, and B. M. Tyrrell, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron. 13, 870-886 (2007). [CrossRef]
  12. S. E. Johnson, P. Gatt, and T. L. Nichols, “Analysis of Geiger-mode APD laser radars,” Proc. SPIE 5086, 359-368(2003). [CrossRef]
  13. R. McIntyre, “The distribution of gains in uniformly multiplying avalanche photodiodes: theory,” IEEE Trans. Electron. Devices 19, 703-713 (1972). [CrossRef]
  14. R. M. Marino, T. Stephens, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O'Brien, G. S. Rowe, J. S. Adams, L. Skelly, R. C. Knowlton, S. E. Forman, and W. R. Davis, “A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements,” Proc. SPIE 5086, 1-15 (2003). [CrossRef]
  15. R. Brown, K. Ridley, and J. Rarity, “Characterization of silicon avalanche photodiodes for photon correlation measurements. 2: Active quenching,” Appl. Opt. 26, 2383-2389 (1987). [CrossRef] [PubMed]
  16. H. Dautet, P. Deschamps, M. Dion, A. D. MacGregor, D. MacSween, R. J. McIntyre, C. Trottier, and P. P. Webb, “Photon counting techniques with silicon avalanche photodiodes,” Appl. Opt. 32, 3894-3900 (1993). [PubMed]
  17. R. Ben-Michael, M. A. Itzler, and B. Nyman, “Afterpulsing in Geiger-mode avalanche photodiodes for 1.06 um wavelength,” Appl. Phys. Lett. . 88, 783-784 (2006).
  18. H. L. Van Trees, Detection, Estimation, and Modulation Theory: Part I. (Wiley Interscience, 2001).
  19. M. Teich and B. Saleh, “Effects of random deletion and additive noise on bunched and antibunched photon-counting statistics,” Opt. Lett. 7, 365-367 (1982). [CrossRef] [PubMed]
  20. J. Goodman, Statistical Optics (Wiley Interscience, 1985).
  21. B. Saleh and M. Teich, Photoelectron Statistics (Springer-Verlag, 1978).
  22. J. W. Goodman, “Some effects of target-induced scintillation on optical radar performance,” Proc. IEEE 53, 1688-1700 (1965). [CrossRef]
  23. G. Casella and R. Berger, Statistical Inference (Duxbury, 2002).
  24. A. Papoulis, Probability, Random Variables, and Stochastic Processes (McGraw-Hill, 1984).
  25. A. Leon-Garcia, Probability and Random Processes for Electrical Engineering (Addison-Wesley, 1994).
  26. P. Gatt and S. W. Henderson, “Laser radar detection statistics: a comparison of coherent and direct detection receivers,” Proc. SPIE 4377, 251-262 (2001). [CrossRef]
  27. J. R. Buck, “Effects of dead-time in Geiger-mode APD arrays for CW and pulsed configurations,” Aerospace Company Report (Aerospace, 2005).
  28. J. X. Luu and L. A. Jiang, “Saturation effects in heterodyne detection with Geiger-mode InGaAs avalanche photodiode detector arrays,” Appl. Opt. 45, 3798-3804 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited