OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 18 — Jun. 20, 2009
  • pp: 3322–3336

Retrievals of atmospheric CO 2 from simulated space-borne measurements of backscattered near-infrared sunlight: accounting for aerosol effects

André Butz, Otto P. Hasekamp, Christian Frankenberg, and Ilse Aben  »View Author Affiliations

Applied Optics, Vol. 48, Issue 18, pp. 3322-3336 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1984 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Retrievals of atmospheric carbon dioxide ( CO 2 ) from space-borne measurements of backscattered near-infrared sunlight are hampered by aerosol and cirrus cloud scattering effects. We propose a retrieval approach that allows for the retrieval of a few effective aerosol parameters simultaneously with the CO 2 total column by parameterizing particle amount, height distribution, and microphysical properties. Two implementations of the proposed method covering different spectral bands are tested for an ensemble of simulated nadir observations for aerosol (and cirrus) loaded scenes over low- and mid-latitudinal land surfaces. The residual aerosol-induced CO 2 errors are mostly below 1% up to aerosol optical thickness 0.5. The proposed methods also perform convincing for scenes where cirrus clouds of optical thickness 0.1 overlay the aerosol.

© 2009 Optical Society of America

OCIS Codes
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(290.1090) Scattering : Aerosol and cloud effects
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: March 17, 2009
Revised Manuscript: May 22, 2009
Manuscript Accepted: May 26, 2009
Published: June 10, 2009

André Butz, Otto P. Hasekamp, Christian Frankenberg, and Ilse Aben, "Retrievals of atmospheric CO2 from simulated space-borne measurements of backscattered near-infrared sunlight: accounting for aerosol effects," Appl. Opt. 48, 3322-3336 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Yokota, H. Oguma, I. Morino, A. Higurashi, T. Aoki, and G. Inoue, “Test measurements by a BBM of the nadir-looking SWIR FTS aboard GOSAT to monitor CO2 column density from space,” in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, S. C. Tsay, T. Yokota, and M. -H. Ahn, eds. (2004), Vol. 5652, pp, 182-188.
  2. D. Crisp, R. M. Atlas, F.-M. Bréon, L. R. Brown, J. P. Burrows, P. Ciais, B. J. Connor, S. C. Doney, I. Y. Fung, D. J. Jacob, C. E. Miller, D. O'Brien, S. Pawson, J. T. Randerson, P. Rayner, R. J. Salawitch, S. P. Sander, B. Sen, G. L. Stephens, P. P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, Z. Kuang, B. Chudasama, G. Sprague, B. Weiss, R. Pollock, D. Kenyon, and S. Schroll, “The Orbiting Carbon Observatory (OCO) mission,” Adv. Space Res. 34, 700-709 (2004). [CrossRef]
  3. Z. Kuang, J. Margolis, G. Toon, D. Crisp, and Y. Yung, “Spaceborne measurements of atmospheric CO2 by high-resolution NIR spectrometry of reflected sunlight: an introductory study,” Geophys. Res. Lett. 29, 1716-1720 (2002). [CrossRef]
  4. J. Mao and S. R. Kawa, “Sensitivity studies for space-based measurement of atmospheric total column carbon dioxide by reflected sunlight,” Appl. Opt. 43, 914-927 (2004). [CrossRef] [PubMed]
  5. P. J. Rayner and D. M. O'Brien, “The utility of remotely sensed CO2 concentration data in surface source inversions,” Geophys. Res. Lett. 28, 175-178 (2001). [CrossRef]
  6. S. Houweling, F.-M. Bréon, I. Aben, C. Rödenbeck, M. Gloor, M. Heimann, and P. Ciais, “Inverse modeling of CO2 sources and sinks using satellite data: a synthetic inter-comparison of measurement techniques and their performance as a function of space and time,” Atmos. Chem. Phys. 4, 523-538 (2004). [CrossRef]
  7. F. Chevallier, F.-M. Bréon, and P. J. Rayner, “Contribution of the Orbiting Carbon Observatory to the estimation of CO2 sources and sinks: theoretical study in a variational data assimilation framework,” J. Geophys. Res. 112, D09307 (2007). [CrossRef]
  8. C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Bösch, B. J. Connor, I. Y. Fung, D. O'Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007). [CrossRef]
  9. D. F. Baker, H. Bösch, S. C. Doney, and D. S. Schimel, “Carbon source/sink information provided by column CO2 measurements from the Orbiting Carbon Observatory,” Atmos. Chem. Phys. Disc. 8, 20051-20112 (2008). [CrossRef]
  10. L. Feng, P. I. Palmer, H. Bösch, and S. Dance, “Estimating surface CO2 fluxes from space-borne CO2 dry air mole fraction observations using an ensemble Kalman Filter,” Atmos. Chem. Phys. 9, 2619-2633 (2008). [CrossRef]
  11. D. M. O'Brien and P. J. Rayner, “Global observations of the carbon budget 2. CO2 column from differential absorption of reflected sunlight in the 1.61 μm band of CO2,” J. Geophys. Res. 107, 4354 (2002). [CrossRef]
  12. E. Dufour and F.-M. Bréon, “Spaceborne estimate of atmospheric CO2 column by use of the differential absorption method: error analysis,” Appl. Opt. 42, 3595-3609 (2003). [CrossRef] [PubMed]
  13. S. Houweling, W. Hartmann, I. Aben, H. Schrijver, J. Skidmore, G.-J. Roelofs, and F.-M. Bréon, “Evidence of systematic errors in SCIAMACHY-observed CO2 due to aerosols,” Atmos. Chem. Phys. 5, 3003-3013 (2005). [CrossRef]
  14. I. Aben, O. Hasekamp, and W. Hartmann, “Uncertainties in the space-based measurements of CO2 columns due to scattering in the Earth's atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 104, 450-459 (2007). [CrossRef]
  15. H. Bösch, G. C. Toon, B. Sen, R. A. Washenfelder, P. O. Wennberg, M. Buchwitz, R. de Beek, J. P. Burrows, D. Crisp, M. Christi, B. J. Connor, V. Natraj, and Y. L. Yung, “Space-based near-infrared CO2 measurements: testing the Orbiting Carbon Observatory retrieval algorithm and validation concept using SCIAMACHY observations over Park Falls, Wisconsin,” J. Geophys. Res. 111, D23302 (2006). [CrossRef]
  16. M. P. Barkley, P. S. Monks, A. J. Hewitt, T. Machida, A. Desai, N. Vinnichenko, T. Nakazawa, M. Y. Arshinov, N. Fedoseev, and T. Watai, “Assessing the near surface sensitivity of SCIAMACHY atmospheric CO2 retrieved using (FSI) WFM-DOAS,” Atmos. Chem. Phys. 7, 3597-3619 (2007). [CrossRef]
  17. O. Schneising, M. Buchwitz, J. P. Burrows, H. Bovensmann, M. Reuter, J. Notholt, R. Macatangay, and T. Warneke, “Three years of greenhouse gas column-averaged dry air mole fractions retrieved from satellite Part 1: carbon dioxide,” Atmos. Chem. Phys. 8, 3827-3853 (2008). [CrossRef]
  18. B. J. Connor, H. Bösch, G. Toon, B. Sen, C. Miller, and D. Crisp, “Orbiting Carbon Observatory: inverse method and prospective error analysis,” J. Geophys. Res. 113, D05305 (2008). [CrossRef]
  19. S. Oshchepkov, A. Bril, and T. Yokota, “PPDF-based method to account for atmospheric light scattering in observations of carbon dioxide from space,” J. Geophys. Res. 113, D23210 (2008). [CrossRef]
  20. O. P. Hasekamp and J. Landgraf, “A linearized vector radiative transfer model for atmospheric trace gas retrieval,” J. Quant. Spectrosc. Radiat. Transfer 75, 221-238 (2002). [CrossRef]
  21. O. P. Hasekamp and J. Landgraf, “Linearization of vector radiative transfer with respect to aerosol properties and its use in satellite remote sensing,” J. Geophys. Res. 110, D04203 (2005). [CrossRef]
  22. O. P. Hasekamp and J. Landgraf, “Retrieval of aerosol properties over the ocean from multispectral single-viewing-angle measurements of intensity and polarization: retrieval approach, information content, and sensitivity study,” J. Geophys. Res. 110, D20207 (2005). [CrossRef]
  23. B. van Diedenhoven, O. P. Hasekamp, and J. Landgraf, “Retrieval of cloud parameters from satellite-based reflectance measurements in the ultraviolet and the oxygen A-band,” J. Geophys. Res. 112, D15208 (2007). [CrossRef]
  24. O. P. Hasekamp and A. Butz, “Efficient calculation of intensity and polarization spectra in vertically inhomogeneous scattering and absorbing atmospheres,” J. Geophys. Res. 113, D20309 (2008). [CrossRef]
  25. L. S. Rothman, D. Jacquemart, A. Barbe, D. Chris Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005). [CrossRef]
  26. R. A. Toth, L. R. Brown, C. E. Miller, V. Malathy Devi, and D. C. Benner, “Spectroscopic database of CO2 line parameters: 4300 7000 cm−1,” J. Quant. Spectrosc. Radiat. Transfer 109, 906-921 (2008). [CrossRef]
  27. H. C. van de Hulst, Light Scattering by Small Particles (John Wiley & Sons, 1957).
  28. W. A. de Rooij and C. C. A. H. van der Stap, “Expansion of Mie scattering matrices in generalized spherical functions,” Astron. Astrophys. 131, 237-248 (1984).
  29. M. I. Mishchenko, I. V. Geogdzhayev, B. Cairns, W. B. Rossow, and A. A. Lacis, “Aerosol retrievals over the ocean by use of channels 1 and 2 AVHRR data: sensitivity analysis and preliminary results,” Appl. Opt. 38, 7325-7341 (1999). [CrossRef]
  30. J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527-610 (1974). [CrossRef]
  31. O. Dubovik, B. N. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590-608(2002). [CrossRef]
  32. P. Stier, J. Feichter, S. Kinne, S. Kloster, E. Vignati, J. Wilson, L. Ganzeveld, I. Tegen, M. Werner, Y. Balkanski, M. Schulz, O. Boucher, A. Minikin, and A. Petzold, “The aerosol-climate model ECHAM5-HAM,” Atmos. Chem. Phys. 5, 1125-1156(2005). [CrossRef]
  33. Intergovernmental Panel on Climate Change (IPCC), Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (2007).
  34. M. Hess and M. Wiegner, “COP: a data library of optical properties of hexagonal ice crystals,” Appl. Opt. 33, 7740-7746(1994). [CrossRef] [PubMed]
  35. M. Hess, “Scattering matrices of imperfect hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 60, 301-308(1998). [CrossRef]
  36. A. J. Heymsfield and C. M. R. Platt, “A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content,” J. Atmos. Sci. 41, 846-855 (1984). [CrossRef]
  37. C. D. Rodgers, Inverse Methods for Atmospheric Sounding: Theory and Practice (World Scientific, 2000). [CrossRef]
  38. A. Bril, S. Oshchepkov, T. Yokota, and G. Inoue, “Parameterization of aerosol and cirrus cloud effects on reflected sunlight spectra measured from space: application of the equivalence theorem,” Appl. Opt. 46, 2460-2470 (2007). [CrossRef] [PubMed]
  39. URL:http://LPDAAC.usgs.gov

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited