OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 18 — Jun. 20, 2009
  • pp: 3375–3384

Low cost, high performance, self-aligning miniature optical systems

Robert T. Kester, Todd Christenson, Rebecca Richards Kortum, and Tomasz S. Tkaczyk  »View Author Affiliations

Applied Optics, Vol. 48, Issue 18, pp. 3375-3384 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1896 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The most expensive aspects in producing high quality miniature optical systems are the component costs and long assembly process. A new approach for fabricating these systems that reduces both aspects through the implementation of self-aligning LIGA (German acronym for lithographie, galvanoformung, abformung, or x-ray lithography, electroplating, and molding) optomechanics with high volume plastic injection molded and off-the-shelf glass optics is presented. This zero alignment strategy has been incorporated into a miniature high numerical aperture ( NA = 1.0 W ) microscope objective for a fiber confocal reflectance microscope. Tight alignment tolerances of less than 10 μm are maintained for all components that reside inside of a small 9 gauge diameter hypodermic tubing. A prototype system has been tested using the slanted edge modulation transfer function technique and demonstrated to have a Strehl ratio of 0.71. This universal technology is now being developed for smaller, needle-sized imaging systems and other portable point-of-care diagnostic instruments.

© 2009 Optical Society of America

OCIS Codes
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(170.0110) Medical optics and biotechnology : Imaging systems
(170.2150) Medical optics and biotechnology : Endoscopic imaging
(220.4880) Optical design and fabrication : Optomechanics

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: December 3, 2008
Revised Manuscript: May 3, 2009
Manuscript Accepted: May 8, 2009
Published: June 10, 2009

Virtual Issues
Vol. 4, Iss. 8 Virtual Journal for Biomedical Optics

Robert T. Kester, Todd Christenson, Rebecca Richards Kortum, and Tomasz S. Tkaczyk, "Low cost, high performance, self-aligning miniature optical systems," Appl. Opt. 48, 3375-3384 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Liang, K. B. Sung, R. Richards-Kortum, and M. R. Descour, “Fiber confocal reflectance microscope (FCRM) for in-vivo imaging,” Opt. Express 9, 821-830 (2001), http://www.opticsexpress.org. [CrossRef] [PubMed]
  2. K. B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, A. Malpica, and R. Richards-Kortum, “Near real time in vivo fibre optic confocal microscopy: sub-cellular structure resolved,” J. Microsc. 207, 137-145 (2002). [CrossRef] [PubMed]
  3. A. R. Rouse, J. A. Udovich, and A. F. Gmitro, “In-vivo multi-spectral confocal microscopy,” Proc. SPIE 5701, 73-84(2005). [CrossRef]
  4. J. D. Rogers, S. Landau, T. S. Tkaczyk, M. R. Descour, M. S. Rahman, R. Richards-Kortum, A. H. O. Karkainen, and T. Christenson, “Imaging performance of a miniature integrated microendoscope,” J. Biomed. Opt. 13, 054020 (2008). [CrossRef] [PubMed]
  5. W. Gobel, J. N. Kerr, A. Nimmerjahn, and F. Helmchen, “Miniaturized two-photon microscope based on a fexible coherent fiber bundle and a gradient-index lens objective,” Opt. Lett. 29, 2521-2523 (2004). [CrossRef] [PubMed]
  6. H. Bao, J. Allen, R. Pattie, R. Vance, and M. Gu, “Fast handheld two-photon fluorescence microendoscope with a 475 μm×475 μm field of view for in vivo imaging,” Opt. Lett. 33, 1333-1335 (2008). [CrossRef] [PubMed]
  7. M. J. Levene, D. A. Kasischke, K. A. Molloy, and W. W. Webb, “in vivo multiphoton microscopy of deep brain tissue,” J. Neurophysiol. 91, 1908-1912 (2004). [CrossRef]
  8. N. Christodoulides, S. Mohanty, C. S. Miller, M. C. Langub, P. N. Floriano, P. Dharshan, M. F. Ali, B. Bernard, D. Romanovicz, E. Anslyn, P. C. Fox, and J. T. McDevitt, “Application of microchip assay system for the measurement of C-reactive protein in human saliva,” Lab Chip 5, 261-269(2005). [CrossRef] [PubMed]
  9. X. Li, C. Chudoba, T. Ko, C. Pitris, and J. G. Fujimoto, “Imaging needle for optical coherence tomography,” Opt. Lett. 25, 1520-1522 (2000). [CrossRef]
  10. ZEMAX Development Corporation: http://www.zemax.com.
  11. W. B. Wetherall, “The calculation of image quality,” in Applied Optics and Optical Engineering, R. R. Shannon and J. C. Wyant, eds. (Academic, 1980), Vol. 8, pp. 171-316.
  12. M. J. Madou, Fundamentals of Microfabrication, 2nd ed. (CRC Press, 2002).
  13. R. T. Kester, T. S. Tkaczyk, M. R. Descour, T. Christenson, and R. Richards-Kortum, “High numerical aperture microendoscope objective for a fiber confocal reflectance microscope,” Opt. Express 15, 2409-2420 (2007). [CrossRef] [PubMed]
  14. M. D. Chidley, K. Carlson, M. R. Descour, and R. Richards-Kortum, “Design, assembly, and optical bench testing of a high numerical aperture miniature injection-molded objective for fiber-optic confocal reflectance microscopy,” Appl. Opt. 45, 2545-2554 (2006). [CrossRef] [PubMed]
  15. C. Liang, K. B. Sung, R. Richards-Kortum, and M. R. Descour, “Design of a high-numerical-aperture miniature microscope objective for an endoscopic fiber confocal reflectance microscope,” Appl. Opt. 41, 4603-4610 (2002). [CrossRef] [PubMed]
  16. P. D. Burns, “Slanted-edge MTF for digital camera and scanner analysis,” Proceedings of the Society for Imaging Science & Technology 2000 PICS Conference (IEEE, 2000), pp. 135-138.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited