OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 18 — Jun. 20, 2009
  • pp: 3396–3400

Rigid and high-numerical-aperture two-photon fluorescence endoscope

R. Le Harzic, I. Riemann, M. Weinigel, K. König, and B. Messerschmidt  »View Author Affiliations

Applied Optics, Vol. 48, Issue 18, pp. 3396-3400 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1119 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a rigid miniaturized optical system block fiber-optic two-photon endoscope based on a compact two-axis piezo scanner system and a miniature high (0.65) NA GRIN lens objective. The optical system is scanned as a whole by a piezo scanner allowing always an on-axis beam irradiation of the optical system. A photonic crystal fiber is used for excitation and ultrashort laser pulses can be delivered with typical power up to 100 mW at 800 nm . Two-photon fluorescence signal is collected by the use of a multimode fiber. Lateral resolution values for the system were experimentally measured to be 0.67 μm vertically and 1.08 μm horizontally. Axial resolution was found to be 5.8 μm . The endoscope is highly flexible and controllable in terms of time acquisition, resolution, and magnification. Fluorescence images were acquired over a 420 μm × 420 μm field of view. Results presented here demonstrate the ability of the system to resolve subcellular details and the potential of the technology for in vivo applications.

© 2009 Optical Society of America

OCIS Codes
(110.2760) Imaging systems : Gradient-index lenses
(170.2150) Medical optics and biotechnology : Endoscopic imaging
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5810) Medical optics and biotechnology : Scanning microscopy
(190.4180) Nonlinear optics : Multiphoton processes

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: October 22, 2008
Revised Manuscript: March 5, 2009
Manuscript Accepted: May 1, 2009
Published: June 11, 2009

Virtual Issues
Vol. 4, Iss. 8 Virtual Journal for Biomedical Optics

R. Le Harzic, I. Riemann, M. Weinigel, K. König, and B. Messerschmidt, "Rigid and high-numerical-aperture two-photon fluorescence endoscope," Appl. Opt. 48, 3396-3400 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning microscopy,” Science 248, 73-76 (1990). [CrossRef] [PubMed]
  2. K. König, “Review: multiphoton microscopy in life sciences,” J. Microsc. 200, 83-104 (2000). [CrossRef] [PubMed]
  3. K. König and I. Riemann, “High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution,” J. Biomed. Opt. 8, 432-439(2003). [CrossRef] [PubMed]
  4. R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555-606 (1996). [CrossRef] [PubMed]
  5. W. A. Reed, M. F. Yan, and M. J. Schnitzer, “Gradient-index fiber-optic microprobes for minimally invasive in vivo low-coherence interferometry,” Opt Lett 27, 1794-1796 (2002). [CrossRef]
  6. J. C. Jung and M. J. Chnitzer, “Multiphoton endoscopy,” Opt. Lett. 28, 902-904 (2003). [CrossRef] [PubMed]
  7. M. T. Myaing, D. J. MacDonald, and X. Li, “Fiber-optic scanning two-photon fluorescence endoscope,” Opt. Lett. 31, 1076-1078 (2006). [CrossRef] [PubMed]
  8. C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, “Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo,” Opt. Express 16, 5556-5564 (2008). [CrossRef] [PubMed]
  9. B. Messerschmidt, A. Kraeplin, S. Schenkl, I. Riemann, M. Stark, A. Ehlers, A. Tchernook, R. Le Harzic, and K. König, “Novel concept of GRIN optical systems for high resolution microendoscopy: Part 1. Physical aspects,” Proc.SPIE 6432, 643202 (2007). [CrossRef]
  10. S. Schenkl, A. Ehlers, R. Le Harzic, M. Stark, I. Riemann, B. Messerscmidt, M. Kaatz, and K. König, “Rigid and high NA multiphoton fluorescence GRIN-endoscopes,” Proc. SPIE 6631, 66310Q (2007). [CrossRef]
  11. K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech. 70, 398-402 (2007). [CrossRef] [PubMed]
  12. F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope: high-resolution brain imaging in freely moving animals,” Neuron 31, 903-912(2001). [CrossRef] [PubMed]
  13. E. J. Seibel and Q. Y. L. Smithwick, “Unique features of optical scanning, single fiber endoscopy,” Lasers Surg. Med. 30, 177-183 (2002). [CrossRef] [PubMed]
  14. L. Fu, X. Gan, and M. Gu, “Nonlinear optical microscopy based on double-clad photonic crystal fibers,” Opt. Express 13, 5528-5534 (2005). [CrossRef] [PubMed]
  15. B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, “In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope,” Opt. Lett. 30, 2272-2274 (2005). [CrossRef] [PubMed]
  16. W. Piyawattanametha, R. P. J. Barretto, T. H. Ko, B. A. Flusberg, E. D. Cocker, H. Ra, D. Lee, O. Solgaard, and M. J. Schnitzer, “Fast-scanning two-photon fluorescence imaging based on a microelectromechanical systems two-dimensional scanning mirror,” Opt. Lett. 31, 2018-2020(2006). [CrossRef] [PubMed]
  17. J. Sawinski and W. Denk, “Miniature random-access fiber scanner for in vivo multiphoton imaging,” J. Appl. Phys. 102, 034701 (2007). [CrossRef]
  18. E. J. Seibel, R. S. Johnston, C. M. Brown, J. A. Dominitz, and M. B. Kimmey, “Novel ultrathin scanning fiber endoscope for cholangioscopy and pancreatoscopy,” Gastrointest. Endosc. 65, Ab125-Ab125 (2007). [CrossRef]
  19. L. Fu, A. Jain, H. Xie, C. Cranfield, and M. Gu, “Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror,” Opt. Express 14, 1027-1032(2006). [CrossRef] [PubMed]
  20. L. Fu and M. Gu, “Fibre-optic nonlinear optical microscopy and endoscopy,” J. Microsc. (Oxford) 226, 195-206 (2007). [CrossRef]
  21. C. S. Croix, W. R. Zipfel, and S. C. Watkins, “Potential solutions for confocal imaging of living animals,” BioTechniques 43, S14-S19 (2007). [CrossRef]
  22. I. Riemann, S. Schenkl, R. Le Harzic, D. Sauer, A. Ehlers, B. Messerschmidt, M. Kaatz, R. Bückle, and K. König, “Two-photon imaging using a flexible endoscope,” Proc. SPIE 6851, 68510B (2008). [CrossRef]
  23. C. L. Hoy, N. J. Durr, P. Chen, W. Piyawattanametha, H. Ra, O. Solgaard, and A. Ben-Yakar, “Miniaturized probe for femtosecond laser microsurgery and two-photon imaging,” Opt. Express 16, 9996-10005 (2008). [CrossRef] [PubMed]
  24. A. Kouvatov, R. Steinhausen, W. Seifert, T. Hauke, H. T. Langhammer, H. Beige, and H. Abicht, “Comparison between bimorphic and polymorphic bending devices,” J. Eur. Ceram. Soc. 19, 1153-1156 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited