OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 18 — Jun. 20, 2009
  • pp: 3438–3445

Optical wave fields with lateral and longitudinal periodicity

Jürgen Jahns and Adolf W. Lohmann  »View Author Affiliations


Applied Optics, Vol. 48, Issue 18, pp. 3438-3445 (2009)
http://dx.doi.org/10.1364/AO.48.003438


View Full Text Article

Enhanced HTML    Acrobat PDF (1037 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The propagation of stationary wave fields that exhibit simultaneously lateral and longitudinal periodicity is investigated. As a model, we use a Fabry–Perot resonator with periodically structured mirrors under monochromatic plane wave illumination. The resonator leads to a longitudinal periodicity, the grating mirrors to a lateral periodicity. The angular spectrum of the transmitted wave field is given as the product of two terms, one related to the lateral, the other to the longitudinal properties. Its modal structure can vary significantly depending on the ratio of the lateral and longitudinal periods and the reflectivity of the resonator's mirrors. For example, it is possible to generate bandgap behavior despite the fact that the periods may be significantly larger than the wavelength. The results of this investigation apply to the design of phase-coupled array resonators and multiplexers.

© 2009 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(070.6760) Fourier optics and signal processing : Talbot and self-imaging effects
(140.3410) Lasers and laser optics : Laser resonators
(140.3325) Lasers and laser optics : Laser coupling

ToC Category:
Diffraction and Gratings

History
Original Manuscript: February 17, 2009
Revised Manuscript: April 23, 2009
Manuscript Accepted: May 28, 2009
Published: June 11, 2009

Citation
Jürgen Jahns and Adolf W. Lohmann, "Optical wave fields with lateral and longitudinal periodicity," Appl. Opt. 48, 3438-3445 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-18-3438


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. von Laue, “Die Freiheitsgrade von Strahlenbündeln,” Ann. Phys. (Leipzig) 44, 1197-1212 (1914).
  2. R. Piestun and J. Shamir, “Synthesis of three-dimensional light fields and applications,” Proc. IEEE 90, 222-244 (2002). [CrossRef]
  3. K. Patorski, “The self-imaging phenomenon and its applications,” Prog. Opt. 27, 1-108 (1989). [CrossRef]
  4. E. Kapon, J. Katz, and A. Yariv, “Supermode analysis of phase-locked arrays of semiconductor lasers,” Opt. Lett. 9, 125-127(1984). [CrossRef] [PubMed]
  5. J. R. Leger, M. L. Scott, and W. B. Veldkamp, “Coherent addition of AlGaAs lasers using microlenses and diffractive coupling,” Appl. Phys. Lett. 52, 1771-1773 (1988). [CrossRef]
  6. F. X. D'Amato, E. T. Siebert, and C. Roychoudhuri, “Coherent operation of an array of diode lasers using a spatial filter in a Talbot cavity,” Appl. Phys. Lett. 55, 816-818 (1989). [CrossRef]
  7. L. Liu, “Talbot and Lau effects on incident beams of arbitrary wavefront, and their use,” Appl. Opt. 28, 4668-4678(1989). [CrossRef] [PubMed]
  8. M. Wrage, P. Glas, D. Fischer, M. Leitner, D. V. Vysotsky, and A. P. Napartovich, “Phase locking in a multicore fiber laser by means of a Talbot resonator,” Opt. Lett. 25, 1436-1438 (2000). [CrossRef]
  9. Q. Li, P. Zhao, and W. Guo, “Amplitude compensation of a diode laser array phase locked with a Talbot cavity,” Appl. Phys. Lett. 89, 231120 (2006). [CrossRef]
  10. V. Eckhouse, A. A. Ishaaya, L. Shimshi, N. Davidson, and A. Friesem, “Intracavity coherent addition of lasers,” in Advances in Information Optics and Photonics, A. T. Friberg and R. Dändliker. eds. (SPIE Press, 2008), Chap. 6. [CrossRef]
  11. A. W. Lohmann, D. Mendlovic, and G. Shabtay, “Talbot (1836), Montgomery (1967), Lau (1948) and Wolf (1955) on periodicity in optics,” Pure Appl. Opt. 7, 1121-1124 (1998). [CrossRef]
  12. H. F. Talbot, “Facts relating to optical science, No. IV,” Phil. Mag. 9, 401-407 (1836).
  13. W. D. Montgomery, “Self-imaging objects of infinite aperture,” J. Opt. Soc. Am. 57, 772-778 (1967). [CrossRef]
  14. A. W. Lohmann and D. A. Silva, “An interferometer based on the Talbot effect,” Opt. Commun. 2, 413-415 (1971). [CrossRef]
  15. K. Patorski and P. Szwaykowski, “Optical differentiation of quasi-periodic patterns using Talbot interferometry,” Opt. Acta 31, 23-31 (1984). [CrossRef]
  16. K. Banaszek, K. Wodkiewicz, and W. P. Schleich, “Talbot effect in phase space: compact summation formula,” Opt. Express 2, 169-172 (1998). [CrossRef] [PubMed]
  17. J. Jahns, E. El Joudi, D. Hagedorn, and S. Kinne, “Talbot interferometer as a time filter,” Optik (Jena) 112, 295-298(2001). [CrossRef]
  18. J. Jahns and A. W. Lohmann, “Temporal filtering by double diffraction,” Appl. Opt. 43, 4339-4344 (2004). [CrossRef] [PubMed]
  19. H. Knuppertz, J. Jahns, and R. Grunwald, “Temporal impulse response of the Talbot interferometer,” Opt. Commun. 277, 67-73 (2007). [CrossRef]
  20. G. Indebetouw, “Self-imaging through a Fabry-Pérot interferometer,” Opt. Acta 30, 1463-1471 (1983). [CrossRef]
  21. S. Helfert, B. Huneke, and J. Jahns, “Self-imaging effect in multimode waveguides with longitudinal periodicity,” J. Eur. Opt. Soc. Rapid Commun. (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited