OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 18 — Jun. 20, 2009
  • pp: 3460–3467

Acoustic effects of metal vapor lasers

Maryam Zoghi, Parviz Parvin, Saeid Behrouzinia, Davoud Salehinia, Kamran Khorasani, and Hossein Mehravaran  »View Author Affiliations


Applied Optics, Vol. 48, Issue 18, pp. 3460-3467 (2009)
http://dx.doi.org/10.1364/AO.48.003460


View Full Text Article

Enhanced HTML    Acrobat PDF (810 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Some fluctuations in the output power of a copper vapor laser with a 16 mm bore were recorded by varying the excitation frequency from 13 to 33 kHz. The effect arises from the laser tube, which performs both as an optical and an acoustic resonator at the acoustic resonant frequencies. It is shown that a similar effect occurs in other metal vapor and copper halide lasers as well.

© 2009 Optical Society of America

OCIS Codes
(140.1340) Lasers and laser optics : Atomic gas lasers
(140.3460) Lasers and laser optics : Lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: September 2, 2008
Revised Manuscript: April 20, 2009
Manuscript Accepted: May 7, 2009
Published: June 11, 2009

Citation
Maryam Zoghi, Parviz Parvin, Saeid Behrouzinia, Davoud Salehinia, Kamran Khorasani, and Hossein Mehravaran, "Acoustic effects of metal vapor lasers," Appl. Opt. 48, 3460-3467 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-18-3460


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Z. G. Huang, H. Y. Shan, Y. Huo, and H. Wang, “A gold-vapor laser using Ne─H2 as buffer gas,” Appl. Phys. B 44, 57-59(1987). [CrossRef]
  2. R. R. Lewis, “The operating regime of longitudinal discharge copper vapour lasers,” Opt. Quantum Electron. 23, s493-s512 (1991). [CrossRef]
  3. C. Cheng, “Plasma kinetics mechanism of an optimized copper vapor laser,” J. Phys. D: Appl. Phys. 33, 1167-1178 (2000). [CrossRef]
  4. S. Behrouzinia, R. Sadighi, and P. Parvin, “Pressure dependence of the small-signal gain and saturation intensity of a copper vapor laser,” Appl. Opt. 42, 1013-1018 (2003). [CrossRef] [PubMed]
  5. S. Behrouzinia, R. Sadighi, P. Parvin, and M. Zand, “Temperature dependence of the amplifying parameters of a copper vapor laser,” Laser Phys. 14, 1050-1053 (2004).
  6. C. E. Little, Metal Vapour Lasers: Physics, Engineering and Application (Wiley-VCH, 1999), Chap. 3.
  7. V. F. Kravchenko, E. K. Karabute, A. A. Gudkov, and V. E. Bogoslavski, “Influence of acoustic waves on the output power of pulsed gas discharge lasers,” Sov. J. Quantum Electron. 12(2), 143-146 (1982). [CrossRef]
  8. D. N. Astadjov, N. K. Vuchkov, and N. V. Sabotinov, “Parametric study of CuBr laser with hydrogen additives,” IEEE J. Quantum Electron. 24, 1927-1935 (1988). [CrossRef]
  9. D. N. Astadjov, K. D. Dimitrov, C. E. Little, N. V. Sabotinov, and N. K. Vuchkov, “A CuBr laser with 1.4 W/cm3 average output power,” IEEE J. Quantum Electron. 30, 1358-1360 (1994). [CrossRef]
  10. D. N. Astadjov, K. D. Dimitrov, D. R. Jones, V. Kirkov, L. Little, C. E. Little, N. V. Sabotinov, and N. K. Vuchkov, “Influence on operating characteristics of scaling sealed-off CuBr lasers in active length,” Opt. Commun. 135, 289-294 (1997). [CrossRef]
  11. K. Khorasani, D. Salehinia, S. Behrouzinia, B. Sajad, and M. Parvizian, “Frequency dependence of the output power of metal vapor lasers,” Opt. Commun. 281, 3799-3801 (2008). [CrossRef]
  12. M. W. Sigrist, “Laser generation of acoustic waves in liquids and gases,” J. Appl. Phys. 60(7), R83 (1986). [CrossRef]
  13. R. Haensel, G. Keitel, N. Kosuch, U. Nielsen, and P. Schreiber, “Optical absorption of solid neon and argon in the soft x-ray region,” J. Phys. (Paris) Colloq. 32(C4), 236-240 (1971). [CrossRef]
  14. O. Uteza, Ph. Delaporte, B. Fontaine, B. Forestier, M. Sentis, I. Tassy, and J. P. Truong, “Acoustic wave origin in excimer lasers,” Appl. Phys. B 64, 531-537 (1997). [CrossRef]
  15. F. E. C. Culick, P. I. Shen, and W. S. Griffin, “Acoustic waves and heating due to molecular energy transfer in an electric discharge CO laser,” IEEE J. Quantum Electron. 12, 566-574 (1976). [CrossRef]
  16. A. V. Artamonov, V. A. Konev, V. V. Likhaskii, and A. P. Napartovich, “Output-power fluctuations of flowing-gas CO2 lasers with unstable resonators,” Sov. J. Quantum Electron. 14, 807-812 (1984). [CrossRef]
  17. V. Yu. Baranov, V. M. Borisov, A. Yu. Vinokhodov, F. I. Vysikailo, A. V. Gubarev, Yu. B. Kiryukhin, I. E. Krayushkin, and S. A. Laptev, “Acoustic vibration in the gas-discharge chamber of the fast-flow pulse-periodic laser,” Sov. J. Quantum Electron. 17 , 766-770 (1987). [CrossRef]
  18. W. Demtroder, Atoms, Molecules and Photons: An Introduction to Atomic, Molecular, and Quantum-Physics (Academic, 2006).
  19. A. Miklos, P. Hess, and Z. Bozoki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72, 1937-1955 (2001). [CrossRef]
  20. B. Baumann, M. Wolff, B. Kost, and H. Groninga, “Calculation of quality factors and amplitudes of photoacoustic resonator,” Proceeding of the COMSOL Users Conference (Springer, 2006), pp. 134-138.
  21. M. P. Morse and K. U. Ingard, Theoretical Acoustics (McGraw-Hill, 1968).
  22. M. J. Withford, D. J. W. Brown, and J. A. Piper, “Investigation of the effect of hydrogen and deuterium on copper vapour laser performance,” Opt. Commun. 110, 699-707 (1994). [CrossRef]
  23. M. J. Withford, D. J. W. Brown, R. J. Carman, and J. A. Piper, “Enhanced performance of elemental copper-vapor lasers by use of H2─HCl─Ne buffer-gas mixtures,” Opt. Lett. 23, 706-708 (1998). [CrossRef]
  24. B. A. Ghani and M. Hammadi, “Modeling the plasma kinetic mechanisms of CuBr laser with neon-hydrogen additives,” Opt. Laser. Technol. 38, 67-76 (2006). [CrossRef]
  25. O. S. Torosyan, A. R. Mkrtchyan, and M. K. Musakhanian, “Acoustic instability in inhomogeneous gas-discharge plasma,” High Temp. 43, 486-495 (2005). [CrossRef]
  26. R. J. Carman, M. J. Withford, D. J. Brown, and J. A. Piper, “Influence of the pre-pulse electron density on the performance of elemental copper vapor lasers,” Opt. Commun. 157, 99-104 (1998). [CrossRef]
  27. R. J. Carman, R. P. Mildren, M. J. Withford, D. J. Brown, and J. A. Piper, “Modeling the plasma kinetics in a kinetically enhanced copper vapor laser utilizing HCl+H2 admixtures,” IEEE J. Quantum Electron. 36, 438-449 (2000). [CrossRef]
  28. P. A. Bokhan, V. I. Silant'ev, and V. I. Solomonov, “Mechanism for limiting the repetition frequency of pulses from a copper vapor laser,” Sov. J. Quantum Electron. 10, 724-727(1980). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited