OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 18 — Jun. 20, 2009
  • pp: 3481–3489

Minimum refractometrically detectable concentrations of single atmospheric gases and simple mixtures with a Sagnac interferometer

Sean McConnell and Esa Jaatinen  »View Author Affiliations


Applied Optics, Vol. 48, Issue 18, pp. 3481-3489 (2009)
http://dx.doi.org/10.1364/AO.48.003481


View Full Text Article

Enhanced HTML    Acrobat PDF (962 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The minimum quantities of the nine most abundant, isolated, atmospheric gases that are detectable with a refractometer are calculated. An examination of the applicability of refractometric techniques for detecting and analyzing gaseous mixtures is discussed and a comparison made against other established techniques. Traditionally, most gas analysis performed with an interferometer is in determining the dispersion or refractivity of a known sample, presented here is the inverse approach, where refractivities are measured to determine the concentrations of particular species within a gas. The method, and experimental results for determining the minimum quantities of a particular species detectable in a mixture has been explored, as well as the complications, such as the indistinguishability of dynamic polarizabilities of different gases and the subsequent demands for accurate pressure and fringe measurements of using interferometric techniques. It is shown that the concentration of a single (isolated) gas, in units of number density, can be determined to within approximately 1 10 × 10 18 m 3 , and a mixture of the three most abundant gases, N 2 , O 2 and Ar, to within 3.4 × 10 4 parts in 10 6 ( ppm ) when a minimum detectable fringe shift of λ / 100 is assumed.

© 2009 Optical Society of America

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(120.3180) Instrumentation, measurement, and metrology : Interferometry

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: January 14, 2009
Revised Manuscript: May 8, 2009
Manuscript Accepted: May 12, 2009
Published: June 12, 2009

Citation
Sean McConnell and Esa Jaatinen, "Minimum refractometrically detectable concentrations of single atmospheric gases and simple mixtures with a Sagnac interferometer," Appl. Opt. 48, 3481-3489 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-18-3481


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. NASA, “Advanced environmental monitoring and control,” http://aemc.jpl.nasa.gov/activities/mms.cfm.
  2. S. Lichtenberg, C. Heinisch, V. Petrov, J. Petter, and T. Tschudi, “Refractive-index measurement of gases with a phase-shift keyed interferometer,” Appl. Opt. 44, 4659-4665(2005). [CrossRef] [PubMed]
  3. O. C. Mullins, R. J. Schroeder, and P. Rabbito, “Effect of high pressure on the optical detection of gas by index-of-refraction methods,” Appl. Opt. 33, 7963-7970 (1994). [CrossRef] [PubMed]
  4. B. R. Sugg, E. Palayiwa, W. L. Davies, R. Jackson, T. McGraghan, P. Shadbolt, S. J. Weller, and C. E. W. Hahn, “An automated interferometer for the analysis of anaesthetic gas mixtures,” B. J. Anaesth. 61, 484-491(1988). [CrossRef]
  5. A. Verdin, Gas Analysis Instrumentation (MacMillan, 1973).
  6. C. K. Laird, “Chemical analysis: gas analysis,” in Instrumentation Reference Book, Third ed., W.Boyes, ed. (Butterworth Heinemann, 2002).
  7. U. Bonne, G. Yogesh, T. Osamu, and Z. Hans, “Gas sensors,” in Comprehensive Microsystems (Elsevier, 2008), pp. 375-432. [CrossRef]
  8. K. Misawa and T. Kobayashi, “Femtosecond Sagnac interferometer for phase spectroscopy,” Opt. Lett. 20, 1550-1552(1995). [CrossRef] [PubMed]
  9. F. S. Chau, H. M. Shang, C. C. Soh, and Y. Y. Hung, “Determination of fractional fringe orders in holographic interferometry using polarization phase shifting,” Opt. Laser Technol. 25, 371-375 (1993). [CrossRef]
  10. H. Lorentz, “Über die beziehung zwischen der fortpflanzungsgeschwindigkeit des lichtes und der körperdichte,” Ann. Phys 245, 641-665 (1880). [CrossRef]
  11. L. Lorenz, “Über die refractionsconstante,” Ann. Phys 247, 70-103 (1880). [CrossRef]
  12. K. P.. Birch, “Precise determination of refractometric parameters for atmospheric gases,” J. Opt. Soc. Am. A 8, 647-651 (1991). [CrossRef]
  13. E. R. Peck and D. J. Fisher, “Dispersion of argon,” J. Opt. Soc. Am. 54, 1362-1365 (1964). [CrossRef]
  14. E. R. Peck and S. Huang, “Refractivity and dispersion of hydrogen in the visible and near infrared,” J. Opt. Soc. Am. 67, 1550-1554 (1977). [CrossRef]
  15. C. R. Mansfield and E. R. Peck, “Dispersion of helium,” J. Opt. Soc. Am. 59, 199-204 (1969). [CrossRef]
  16. E. R. Peck and B. Khanna, “Dispersion of nitrogen,” J. Opt. Soc. Am. 56, 1059-1063 (1966). [CrossRef]
  17. C. Cuthbertson and M. Cuthbertson, “The refraction and dispersion of neon and helium,” Proc. R. Soc. London Ser. A 135, 40-47 (1932). [CrossRef]
  18. U. Hohm and K. Kerl, “Interferometric measurements of the dipole polarizability of molecules between 300 K and 1100 K,” Mol. Phys. 69, 819-831 (1990). [CrossRef]
  19. P. E. Ciddor, “Refractive index of air: new equations for the visible and near infra red,” Appl. Opt. 35, 1566-1573 (1996). [CrossRef] [PubMed]
  20. J. G. Old, K. L. Gentili, and E. R. Peck, “Dispersion of carbon dioxide,” J. Opt. Soc. Am. 61, 89-91 (1971). [CrossRef]
  21. C. Cuthbertson and M. Cuthbertson, “On the refraction and dispersion of carbon dioxide, carbon monoxide and methane,” Proc. R. Soc. London Ser. A 97, 152-159(1920). [CrossRef]
  22. G. H. Golub and C. F. Van Loan, “Johns Hopkins studies in the mathematical sciences,” Matrix Computations (Johns Hopkins University, 1996).
  23. While still useful here, this applies only to perturbation theory for the least squares problem. Our system is a perturbation to a constrained and bounded least-squares problem, and no such references for estimates on uncertainty in x could be found relating to this special system.
  24. J. W. Demmel, Applied Numerical Linear Algebra (Society for Industrial and Applied Mathematics, 1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited