OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 19 — Jul. 1, 2009
  • pp: 3526–3536

Development of a light scattering solver applicable to particles of arbitrary shape on the basis of the surface-integral equations method of Müller type. I. Methodology, accuracy of calculation, and electromagnetic current on the particle surface

Takashi Y. Nakajima, Teruyuki Nakajima, Kyu Yoshimori, Sumit K. Mishra, and Sachchida N. Tripathi  »View Author Affiliations


Applied Optics, Vol. 48, Issue 19, pp. 3526-3536 (2009)
http://dx.doi.org/10.1364/AO.48.003526


View Full Text Article

Enhanced HTML    Acrobat PDF (2592 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We develop a numerical algorithm for calculating the light-scattering properties of small particles of arbitrary shape on the basis of a method involving surface integral equations. The calculation error was estimated by performing a comparison between the proposed method and the exact Mie method with regard to the extinction efficiency factor, and the results show that the error is less than 1 % when four or more nodes per wavelength are set on the surface of a spherical particle. The accuracy fluctuates in accordance with the distribution of nodal points on the particle surface with respect to the direction of propagation of the incident light. From our examinations, it is shown that the polar incidence alignment yields higher accuracy than equator incidence when a “latitude–longitude” type of mesh generation is adopted. The electric currents on the particle surface and the phase functions of all scattering directions are shown for particles shaped as spheres or hexagonal columns. It is shown that the phase function for a hexagonal column has four or eight cold spots. The phase function of a randomly oriented hexagonal column shows halolike peaks with size parameters of up to 20. This method can be applied to particles with a size parameter of up to about 20 without using the symmetry characteristic of the particle.

© 2009 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.1310) Remote sensing and sensors : Atmospheric scattering
(290.5850) Scattering : Scattering, particles
(290.5825) Scattering : Scattering theory

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: March 6, 2009
Revised Manuscript: May 11, 2009
Manuscript Accepted: May 28, 2009
Published: June 22, 2009

Citation
Takashi Y. Nakajima, Teruyuki Nakajima, Kyu Yoshimori, Sumit K. Mishra, and Sachchida N. Tripathi, "Development of a light scattering solver applicable to particles of arbitrary shape on the basis of the surface-integral equations method of Müller type. I. Methodology, accuracy of calculation, and electromagnetic current on the particle surface," Appl. Opt. 48, 3526-3536 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-19-3526


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. N. Liou and Y. Takano, “Radiative transfer in cirrus clouds. Part III: Light scattering by irregular ice crystals,” J. Atmos. Sci. 52, 818-837 (1995). [CrossRef]
  2. A. Macke, “Scattering of light by polyhedral ice crystals,” Appl. Opt. 32, 2780-2788 (1993). [CrossRef] [PubMed]
  3. J. I. Peltoniemi, K. Lumme, K. Muinonen, and W. M. Irnine, “Scattering of light by stochastically rough particles,” Appl. Opt. 28, 4088-4095 (1989). [CrossRef] [PubMed]
  4. K. Muinonen, T. Nousiainen, P. Fast, K. Lumme, and J. I. Peltoniemi, “Light scattering by Gaussian random particles: ray optics approximation,” J. Quant. Spectrosc. Radiat. Transfer 55, 577-601 (1996). [CrossRef]
  5. A. Macke, M. I. Mishchenko, K. Muinonen, and B. E. Carlson, “Scattering of light by large nonspherical particles--approximation versus T-matrix method,” Opt. Lett. 20, 1934-1936(1995). [CrossRef] [PubMed]
  6. P. Yang and K. N. Liou, “Light-scattering by hexagonal ice crystals--comparison of finite-difference time-domain and geometric optics models,” J. Opt. Soc. Am. A 12, 162-176(1995). [CrossRef]
  7. P. Yang, H. L. Wei, H. L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu, “Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region,” Appl. Opt. 44, 5512-5523 (2005). [CrossRef] [PubMed]
  8. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Leipzig. Ann. Phys. 330, 377-445 (1908). [CrossRef]
  9. J. R. Wait, “Scattering of a plane wave from a circular dielectric cylinder at oblique incidence,” Can. J. Phys. 33, 189-195(1955). [CrossRef]
  10. S. Asano and G. Yamamoto, “Light scattering by a spheroidal particle,” Appl. Opt. 14, 29-49 (1975). [PubMed]
  11. M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 55, 535-575 (1996). [CrossRef]
  12. M. I. Mishchenko, G. Videen, N. G. Khlebtsov, T. Wriedt, and N. T. Zakharova, “Comprehensive T-matrix reference database: a 2006-07 update,” J. Quant. Spectrosc. Radiat. Transfer 109, 1447-1460 (2008). [CrossRef]
  13. P. Yang and K. N. Liou, “Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space,” J. Opt. Soc. Am. A 13, 2072-2085(1996). [CrossRef]
  14. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491-1499(1994). [CrossRef]
  15. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for periodic targets: theory and tests,” J. Opt. Soc. Am. A 25, 2693-2703 (2008). [CrossRef]
  16. Y. Mano, “Exact solution of electromagnetic scattering by a three-dimensional hexagonal ice column obtained with the boundary-element method,” Appl. Opt. 39, 5541-5546(2000). [CrossRef]
  17. P. W. Zhai, C. H. Li, G. W. Kattawar, and P. Yang, “FDTD far-field scattering amplitudes: comparison of surface and volume integration methods,” J. Quant. Spectrosc. Radiat. Transfer 106, 590-594 (2007). [CrossRef]
  18. O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Muñoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon , M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006). [CrossRef]
  19. C. Müller, Foundations of the Mathematical Theory of Electromagnetic Waves (Springer-Verlag, 1969).
  20. J. D. Jackson, Classical Electrodynamics (Wiley, 1962)
  21. M. I. Mishchenko and A. Macke, “How big should hexagonal ice crystals be to produce halos?,” Appl. Opt. 38, 1626-1629(1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited