OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 19 — Jul. 1, 2009
  • pp: 3570–3579

Edge enhancement and image equalization by unsharp masking using self-adaptive photochromic filters

José A. Ferrari, Jorge L. Flores, César D. Perciante, and Erna Frins  »View Author Affiliations


Applied Optics, Vol. 48, Issue 19, pp. 3570-3579 (2009)
http://dx.doi.org/10.1364/AO.48.003570


View Full Text Article

Enhanced HTML    Acrobat PDF (1189 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new method for real-time edge enhancement and image equalization using photochromic filters is presented. The reversible self-adaptive capacity of photochromic materials is used for creating an unsharp mask of the original image. This unsharp mask produces a kind of self filtering of the original image. Unlike the usual Fourier (coherent) image processing, the technique we propose can also be used with incoherent illumination. Validation experiments with Bacteriorhodopsin and photochromic glass are presented.

© 2009 Optical Society of America

OCIS Codes
(100.1160) Image processing : Analog optical image processing
(100.2980) Image processing : Image enhancement

ToC Category:
Image Processing

History
Original Manuscript: March 31, 2009
Revised Manuscript: May 28, 2009
Manuscript Accepted: May 28, 2009
Published: June 22, 2009

Citation
José A. Ferrari, Jorge L. Flores, César D. Perciante, and Erna Frins, "Edge enhancement and image equalization by unsharp masking using self-adaptive photochromic filters," Appl. Opt. 48, 3570-3579 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-19-3570


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. A. Sorenson and C. R. Mitchell, “Evaluation of optical unsharp masking and contrast enhancement of low-scatter chest radiographs,” Am. J. Roentgenol. 149, 275-281 (1987).
  2. P. G. Tahoces, J. Correa, M. Souto, C. Gonzalez, L. Gomez, and J. J. Vidal, “Enhancement of chest and breast radiographs by automatic spatial filtering,” IEEE Trans. Med. Imaging 10, 330-335 (1991). [CrossRef] [PubMed]
  3. M. Schirmer, “Image processing: noise reduction/unsharp masking,” http://www.astro.uni-bonn.de/~mischa/ps/unsharpmask.html.
  4. S. Binnewies, “M81, M82 (wide field) in Ursa Major,” http://www.capella-observatory.com/ImageHTMLs/Galaxies/M81M82.htm.
  5. F. Specht, “Echte unscharfe Maskierung,” http://astronomy.rainbow-serpent.de/howto/unsharpmask.html.
  6. Carl Zeiss, MicroImaging GmbH, “Microscopy & Imaging,” http://www.zeiss.de/c12567be0045acf1/Contents-Frame/df26845c0814ac96c12573c9006e0a97.
  7. M. W. Davidson, “Unsharp Mask Filtering,” (2003), http://microscope.fsu.edu/primer/java/digitalimaging/processing/unsharpmask/.
  8. D. Romeuf, “Le masque flou en imaginerie numerique,” http://www.david-romeuf.fr/Publications/Amateur/MasqueFlou/mf.html.
  9. J. Phillips, “Unsharp Masking--A beginners primer,” http://www.largeformatphotography.info/unsharp/.
  10. S. McHugh, “Sharpening: unsharp mask,” http://www.cambridgeincolour.com/tutorials/unsharp-mask.htm.
  11. A. Polesel, G. Ramponi, and V. J. Mathews, “Image enhancement via adaptive unsharp masking,” IEEE Trans. Image Proc. 9, 505-510 (2000). [CrossRef]
  12. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  13. G. O. Reynolds, J. B. De Velis, G. B. Parrent, and B. J. Thompson, The New Physical Optics Notebook: Tutorials in Fourier Optics (SPIE Optical Engineering Press, 1989). [CrossRef]
  14. E. U. Wagemann and H.-J. Tiziani, “Spatial self-filtering using photorefractive and liquid crystals,” J. Mod. Opt. 45, 1885-1897 (1998). [CrossRef]
  15. C. Uhrich and L. Hesselink, “Submicrometer defect detection in periodic structures by photorefractive holography: system design and performance,” Appl. Opt. 33, 744-757 (1994). [CrossRef] [PubMed]
  16. J. Feinberg, “Real-time edge enhancement using the photorefractive effect,” Opt. Lett. 5, 330-333 (1980). [CrossRef] [PubMed]
  17. E. Ochoa, J. W. Goodman, and L. Hesselink, “Real-time enhancement of defects in a periodic mask using photorefractive Bi12SiO20,” Opt. Lett. 10, 430-432 (1985). [CrossRef] [PubMed]
  18. J. Kato, I. Yamaguchi, and H. Tanaka, “Nonlinear spatial filtering with a dye-doped liquid-crystal cell,” Opt. Lett. 21, 767-769 (1996). [CrossRef] [PubMed]
  19. C. Egami, Y. Suzuki, T. Uemori, O. Sugihara, and N. Okamoto, “Self-adaptive spatial filtering by use of azo chromophores doped in low glass-transition-temperature polymers,” Opt. Lett. 22, 1424-1426 (1997). [CrossRef]
  20. T. Huang and K. H. Wagner, “Photoanisotropic incoherent-to-coherent optical conversion,” Appl. Opt. 32, 1888-1900 (1993). [CrossRef] [PubMed]
  21. T. Okamoto, I. Yamaguchi, and K. Yamagata, “Real-time enhancement of defects in periodic patterns by use of a bacteriorhodopsin film,” Opt. Lett. 22, 337-339 (1997). [CrossRef] [PubMed]
  22. R. Thoma, N. Hampp, and C. Brauchle, “Bacteriorhodopsin films as spatial light modulators for nonlinear-optical filtering,” Opt. Lett. 16, 651-653 (1991). [CrossRef] [PubMed]
  23. J. A. Ferrari, E. Garbusi, E. M. Frins, and G. Píriz, “Spatial self-filtering with polarizer sheets,” Appl. Opt. 44, 4510(2005). [CrossRef] [PubMed]
  24. T. E. Gureyev, Y. I. Nesterets, A. W. Stevenson, and S. W. Wilkins, “A method for local deconvolution,” Appl. Opt. 42, 6488-6494 (2003). [CrossRef] [PubMed]
  25. T. E. Gureyev, A. W. Stevenson, Y. I. Nesterets, and S. W. Wilkins, “Image debluring by means of defocus,” Opt. Commun. 240, 81-88 (2004). [CrossRef]
  26. W. H. Armistead and S. D. Stookey, “Photochromic silicate glasses sensitized by silver halides,” Science 144, 150-154(1964). [CrossRef] [PubMed]
  27. T. Kawamoto, R. Kikuschi, and Y. Kimura, “Photochromic glasses containing silver chloride. Part 1. Effects of glass composition on photosensitivity,” and “Photochromic glasses containing silver chloride. Part 2. Effects of the addition of small amounts of oxides on photosensitivity,” Phys. Chem. Glasses 17, 23-29 (1976).
  28. A. V. Dotsenko, L. B. Glebov, and V. A. Tsekhomsky, Physics and Chemistry of Photochromic Glasses (CRC, 1998).
  29. N. Hampp, “Bacteriorhodopsin as a photochromic retinal protein for optical memories,” Chem. Rev. 100, 1755-1776(2000). [CrossRef]
  30. J. A. Ferrari and C. D. Perciante, “Two-state model of light induced activation and thermal bleaching of photochromic glasses: theory and experiments,” Appl. Opt. 47, 3669-3673(2008). [CrossRef] [PubMed]
  31. J. A. Ferrari and C. D. Perciante, “Two-state model of light induced activation and thermal bleaching of photochromic glasses: erratum,” Appl. Opt. 47, 6879 (2008). [CrossRef]
  32. I. Núñez and J. A. Ferrari, “Differential operator approach for Fourier image processing,” J. Opt. Soc. Am. A 24, 2274-2279(2007). [CrossRef]
  33. J. Lodriguss, “Catching the light. Real digital unsharp masking,” http://www.astropix.com/HTML/J_DIGIT/USM.HTM.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited