OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 19 — Jul. 1, 2009
  • pp: 3626–3637

Medium consumption in holographic memories

Mark R. Ayres and Robert R. McLeod  »View Author Affiliations


Applied Optics, Vol. 48, Issue 19, pp. 3626-3637 (2009)
http://dx.doi.org/10.1364/AO.48.003626


View Full Text Article

Enhanced HTML    Acrobat PDF (717 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The dynamic range of holographic storage media is traditionally characterized in terms of M/#. However, this is a system parameter that assumes simple, uniform plane-wave holograms. Realistic architectures violate this assumption so that M/# measured with plane waves cannot be used to predict system diffraction efficiency. Thus, there currently is no systematic method predicting signal strength and medium consumption for holographic storage architectures a priori. We define a new material parameter, the modulation integral, M I , and show how this may be used for dynamic range budgeting and diffraction efficiency prediction in complex storage systems. The method is illustrated by applying it to two architectures, collinear and angle polytopic, in order to estimate the M/# required for achieving a target storage density in the presence of empirical optical scatter noise.

© 2009 Optical Society of America

OCIS Codes
(090.4220) Holography : Multiplex holography
(160.5470) Materials : Polymers
(180.1790) Microscopy : Confocal microscopy
(210.2860) Optical data storage : Holographic and volume memories
(210.4590) Optical data storage : Optical disks

ToC Category:
Holography

History
Original Manuscript: October 13, 2008
Manuscript Accepted: April 15, 2009
Published: June 22, 2009

Citation
Mark R. Ayres and Robert R. McLeod, "Medium consumption in holographic memories," Appl. Opt. 48, 3626-3637 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-19-3626


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. J. van Heerden, “Theory of optical information storage in solids,” Appl. Opt. 2, 393-400 (1963). [CrossRef]
  2. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Holographic Data Storage (Springer, 2000).
  3. F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915-917 (1993). [CrossRef] [PubMed]
  4. D. Psaltis, M. Levine, A. Pu, G. Barbastathis, and K. Curtis, “Holographic storage using shift multiplexing,” Opt. Lett. 20, 782-784 (1995). [CrossRef] [PubMed]
  5. L. Dhar, A. Hale, H. E. Katz, M. L. Schilling, M. G. Schnoes, and F. C. Schilling, “Recording media that exhibit high dynamic range for digital holographic data storage,” Opt. Lett. 24, 487-489 (1999). [CrossRef]
  6. D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” Proc. SPIE 2689, 127-141 (1996). [CrossRef]
  7. K. Curtis, W. L. Wilson, and L. Dhar, “High density holographic storage,” presented at the International Symposium on Optical Memory 2004, Jeju, South Korea, October 2004.
  8. H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44, 2575-2579 (2005). [CrossRef] [PubMed]
  9. H. F. Shih, “Integrated optical unit design for the collinear holographic storage system,” IEEE Trans. Magn. 43, 948-950 (2007). [CrossRef]
  10. K. Ishioka, K. Tanaka, N. Kojima, A. Fukumoto, and M. Sugiki, “Optical collinear holographic recording system using a blue laser and a random phase mask,” presented at the OSA International Symposium on Optical Memory and Optical Data Storage (ISOM/ODS), Honolulu, Hawaii, 10 July 2005, paper ThE3.
  11. K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and M. Sugiki, “Improvements in multiplexed recording performance in coaxial holographic data storage,” presented at the International Symposium on Optical Memory 2006, Takamatsu, Kagawa, Japan, October 2006 .
  12. K. Anderson and K. Curtis, “Polytopic multiplexing,” Opt. Lett. 29, 1402-1404 (2004). [CrossRef] [PubMed]
  13. K. Curtis, K. Anderson, and M. R. Ayres, “M/# requirements for holographic data storage,” in 2006 Optical Data Storage Topical Meeting (IEEE, 2006), pp. 9-11. [CrossRef]
  14. F. H. Mok, G. W. Burr, and D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21, 896-898 (1996). [CrossRef] [PubMed]
  15. K. Curtis and D. Psaltis, “Cross talk for angle- and wavelength-multiplexed image plane holograms,” Opt. Lett. 19, 1774-1776 (1994). [CrossRef] [PubMed]
  16. M. C. Bashaw, J. F. Heanue, A. Aharoni, J. F. Walkup, and L. Hesselink, “Cross-talk considerations for angular and phase-encoded multiplexing in volume holography,” J. Opt. Soc. Am. B 11, 1820-1836 (1994). [CrossRef]
  17. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2947 (1969).
  18. J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Dev. 44, 341-368 (2000). [CrossRef]
  19. F.T. S.Yu and S.Yin, eds., Photorefractive Optics Materials, Properties, and Applications (Academic, 2000).
  20. M. Born and E. Wolf, Principles of Optics, 6th ed. (Cambridge University Press, 1980), p. 10.
  21. A. Pu, K. Curtis, and D. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng. 35, 2824-2829 (1996). [CrossRef]
  22. R. T. Weverka, K. Wagner, R. R. Mcleod, K. Wu, and C. Garvin, “Low-loss acousto-optic photonic switch,” in Acousto-Optic Signal Processing Theory and Implementation (Marcel Dekker, 1996), pp. 479-573.
  23. B. Gombkötő, P. Koppa, P. Maák, and E. Lőrincz, “Application of the fast-Fourier-transform- based volume integral equation method to model volume diffraction in shift-multiplexed holographic data storage,” J. Opt. Soc. Am. A 23, 2954-2960 (2006). [CrossRef]
  24. H. Trautner, W. Hossfeld, J. Knittel, O. Malki, F. Przygodda, and H. Richter, “Test of key elements for common path holography,” Proc. SPIE 5939, 593903 (2005). [CrossRef]
  25. K. Kimura, “Improvement of the optical signal-to-noise ratio in common-path holographic storage by use of a polarization-controlling media structure,” Opt. Lett. 30, 878-880 (2005). [CrossRef] [PubMed]
  26. H. Horimai and X. Tan, “Collinear technology for a holographic versatile disk,” Appl. Opt. 45, 910-914 (2006). [CrossRef] [PubMed]
  27. H. Horimai and Y. Aoki, “Holographic versatile disc (HVD),” presented at the OSA International Symposium on Optical Memory and Optical Data Storage (ISOM/ODS), Honolulu, Hawaii, July 2005.
  28. H. Horimai and Y. Aoki, “Holographic versatile disc (HVDTM) system,” presented at the International Symposium on Optical Memory 2006, Takamatsu, Kagawa, Japan, October 2006.
  29. K. Anderson, E. Fotheringham, A. Hill, B. Sissom, and K. Curtis, “High speed holographic data storage at 100 Gbit/in2,” OSA International Symposium on Optical Memory and Optical Data Storage (ISOM/ODS), Honolulu, Hawaii, July 2005.
  30. Z. Karpati, K. Banko, G. Szarvas, S. Kautny, and L. Domjan, “Comparison from M# consumption point of view for the coaxial holographic storage arrangements,” presented at the International Symposium on Optical Memory 2006, Takamatsu, Kagawa, Japan, October 2006.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited