OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 19 — Jul. 1, 2009
  • pp: 3664–3670

Soil emissivity and reflectance spectra measurements

José A. Sobrino, Cristian Mattar, Pablo Pardo, Juan C. Jiménez-Muñoz, Simon J. Hook, Alice Baldridge, and Rafael Ibañez  »View Author Affiliations

Applied Optics, Vol. 48, Issue 19, pp. 3664-3670 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (474 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an analysis of the laboratory reflectance and emissivity spectra of 11 soil samples collected on different field campaigns carried out over a diverse suite of test sites in Europe, North Africa, and South America from 2002 to 2008. Hemispherical reflectance spectra were measured from 2.0 to 14 μm with a Fourier transform infrared spectrometer, and x-ray diffraction analysis (XRD) was used to determine the mineralogical phases of the soil samples. Emissivity spectra were obtained from the hemispherical reflectance measurements using Kirchhoff’s law and compared with in situ radiance measurements obtained with a CIMEL Electronique CE312-2 thermal radiometer and converted to emissivity using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) temperature and emissivity separation algorithm. The CIMEL has five narrow bands at approximately the same positions as the ASTER. Results show a root mean square error typically below 0.015 between laboratory emissivity measurements and emissivity measurements derived from the field radiometer.

© 2009 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms

ToC Category:

Original Manuscript: April 15, 2009
Manuscript Accepted: May 20, 2009
Published: June 23, 2009

José A. Sobrino, Cristian Mattar, Pablo Pardo, Juan C. Jiménez-Muñoz, Simon J. Hook, Alice Baldridge, and Rafael Ibañez, "Soil emissivity and reflectance spectra measurements," Appl. Opt. 48, 3664-3670 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Becker, W. Ngai, and M. P. Stoll, “An active method for measuring thermal infrared effective emissivities: implications and perspectives for remote sensing,” Adv. Space Res. 1, 193-210 (1981). [CrossRef]
  2. J. A. Sobrino and J. Cuenca, “Angular variation of thermal infrared emissivity for some natural surfaces from experimental measurements,” Appl. Opt. 38, 3931-3936 (1999). [CrossRef]
  3. J. Cuenca and J. A. Sobrino, “Experimental measurements for studying angular and spectral variation of thermal infrared emissivity,” Appl. Opt. 43, 4598-4602 (2004). [CrossRef] [PubMed]
  4. J. W. Salisbury, A. Wald, and D. M. D'Aria, “Thermal-infrared remote sensing and Kirchhoffs's law. 1. Laboratory measurements,” J. Geophys. Res. 99, 11897-11911 (1994). [CrossRef]
  5. J. W. Salisbury, L. S. Walter, N. Vergo, and D. M. D'Aria, Infrared (2.1-25 μm) Spectra of Minerals (Johns Hopkins U. Press, 1991), p. 267.
  6. P. Christensen and S. T. Harrison, “Thermal infrared emission spectroscopy of natural surfaces: application to desert varnish coatings and rocks,” J. Geophys. Res. 98, 19819-19834 (1993). [CrossRef]
  7. P. R. Christensen, J. L. Bandfield, V. E. Hamilton, D. A. Howard, M. E. Lane, J. L. Piatek, S. W. Ruff, and W. L. Stefanov, “A thermal emission spectral library of rock forming minerals,” J. Geophys. Res. 105, 9735-9738 (2000). [CrossRef]
  8. http://speclib.asu.edu/.
  9. A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113, 711-715 (2009). [CrossRef]
  10. http://speclib.jpl.nasa.gov/.
  11. F. E. Nicodemus, “Directional reflectance and emissivity of an opaque surface,” Appl. Opt. 4, 767-773 (1965). [CrossRef]
  12. S. J. Hook, J. E. Dmochowski, K. A. Howard, L. C. Rowan, K. E. Karlstrom, and J. M. Stock, “Mapping variations in weight percent silica measured from multispectral thermal infrared imagery--Examples from the Hiller Mountains, Nevada, USA and Tres Virgenes-La Reforma, Baja California Sur, Mexico,” Remote Sens. Environ. 95, 273-289 (2005). [CrossRef]
  13. A. Gillespie, S. Rokugawa, T. Matsunaga, J. S. Cothern, S. J. Hook, and A. B. Kahle, “A temperature and emissivity separation algorithm for advance spaceborne thermal emission and reflection radiometer (ASTER) images,” IEEE Trans. Geosci. Remote Sens. 36, 1113-1126 (1998). [CrossRef]
  14. P. S. Kealy and S. J. Hook, “Separating temperature and emissivity in thermal infrared multispectral scanner data: implications for recovering land surface temperatures,” IEEE Trans. Geosci. Remote Sens. 31, 1155-1164 (1993). [CrossRef]
  15. V. Payan and A. Royer, “Analysis of temperature and emissivity separation (TES) algorithm applicability and sensitivity,” Int. J. Remote Sens. 25, 15-37 (2004). [CrossRef]
  16. J. C. Jiménez-Muñoz and J. A. Sobrino, “Emissivity spectra obtained from field and laboratory measurements using the temperature and emissivity separation algorithm,” Appl. Opt. 45, 7104-7109 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited