OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 19 — Jul. 1, 2009
  • pp: 3671–3680

Optical observation of shock waves and cavitation bubbles in high intensity laser-induced shock processes

L. Martí-López, R. Ocaña, J. A. Porro, M. Morales, and J. L. Ocaña  »View Author Affiliations


Applied Optics, Vol. 48, Issue 19, pp. 3671-3680 (2009)
http://dx.doi.org/10.1364/AO.48.003671


View Full Text Article

Enhanced HTML    Acrobat PDF (1284 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report an experimental study of the temporal and spatial dynamics of shock waves, cavitation bubbles, and sound waves generated in water during laser shock processing by single Nd:YAG laser pulses of nanosecond duration. A fast ICCD camera ( 2 ns gate time) was employed to record false schlieren photographs, schlieren photographs, and Mach–Zehnder interferograms of the zone surrounding the laser spot site on the target, an aluminum alloy sample. We recorded hemispherical shock fronts, cylindrical shock fronts, plane shock fronts, cavitation bubbles, and phase disturbance tracks.

© 2009 Optical Society of America

OCIS Codes
(070.6110) Fourier optics and signal processing : Spatial filtering
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(140.3440) Lasers and laser optics : Laser-induced breakdown
(350.3390) Other areas of optics : Laser materials processing

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: January 12, 2009
Revised Manuscript: April 29, 2009
Manuscript Accepted: May 27, 2009
Published: June 22, 2009

Citation
L. Martí-López, R. Ocaña, J. A. Porro, M. Morales, and J. L. Ocaña, "Optical observation of shock waves and cavitation bubbles in high intensity laser-induced shock processes," Appl. Opt. 48, 3671-3680 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-19-3671


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Kruusing, Handbook of Liquids-Assisted Laser Processing (Elsevier, 2007), p. 464.
  2. J. L. Ocaña, C. Molpeceres, J. A. Porro, G. Gómez, and M. Morales, “Experimental assessment of the influence of irradiation parameters on surface deformation and residual stresses in laser shock processed metallic alloys,” Appl. Surf. Sci. 238, 501-505 (2004). [CrossRef]
  3. G. Gómez-Rosas, C. Rubio-González, J. L. Ocaña, C. Molpeceres, J. A. Porro, W. Chi-Moreno, and M. Morales, “High level compressive residual stresses produced in aluminum alloys by laser shock processing,” Appl. Surf. Sci. 252, 883-887 (2005). [CrossRef]
  4. G. W. Yang, “Laser ablation in liquids: Application in the synthesis of nanocrystals,” Prog. Mater. Sci. 52, 648-698(2007). [CrossRef]
  5. D. Song, M. H. Hong, B. Lukyanchuk, and T. C. Chong, “Laser-induced cavitation bubbles for cleaning of solid surfaces,” J. Appl. Phys. 95, 2952-2956 (2004). [CrossRef]
  6. R. O. Esenaliev, A. A. Oraevsky, V. S. Letokhov, A. A. Karabutov, and T. V. Malinsky, “Studies of acoustical and shock waves in the pulsed laser ablation of biotissue,” Lasers Surg. Med. 13, 470-484 (1993). [CrossRef]
  7. P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron. 21, 155-248 (1997). [CrossRef]
  8. J. L. Ocaña, M. Morales, C. Molpeceres, J. Torres, J. A. Porro, G. Gómez, and C. Rubio, “Predictive assessment and experimental characterization of the influence of irradiation parameters on surface deformation and residual stresses in laser shock processed metallic alloys,” Proc. SPIE 5448, 642-653 (2004).
  9. A. Vogel and W. Lauterborn, “Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries,” J. Acoust. Soc. Am. 84, 719-731 (1988). [CrossRef]
  10. M. S. Plesset and R. B. Chapman, “Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary,” J. Fluid Mech. 47, 283-290 (1971). [CrossRef]
  11. A. Philipp and W. Lauterborn, “Cavitation erosion by single laser-produced bubbles,” J. Fluid. Mech. 361, 75-116 (1998).
  12. J. P. Chen, X. W. Ni, J. Lu, B. M. Bian, and Y. W. Wang, “Laser-induced plasma shock wave and cavity on metal surface underwater,” Microw. Opt. Technol. Lett. 25, 307-311 (2000). [CrossRef]
  13. X. Chen, R.-Q. Xu, J.-P. Chen, Z.-H. Shen, L. Jian, and X.-W. Ni, “Shock-wave propagation and cavitation bubble oscillation by Nd:YAG laser ablation of a metal in water,” Appl. Opt. 43, 3251-3257 (2004). [CrossRef]
  14. S. Suzuki, T. Itoh, and D. Suzuki, “Visualization and pressure measurement of underwater shock waves induced by pulsed laser irradiation,” in Symposium on Interdisciplinary Shock Wave Research (Sendai, 2004), http://rainbow.ifs.tohoku.ac.jp/~iswi/ISISW/ISISWsuzuki.pdf.
  15. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (expanded) (Cambridge University Press, 2003).
  16. L. Rodríguez and R. Escalona, “Fourier transforms method for measuring thermal lens induced in diluted liquid samples,” Opt. Commun. 277, 57-62 (2007). [CrossRef]
  17. G. Paltauf, R. Nuster, M. Haltmeier, and P. Burgholzer, “Photoacoustic tomography using a Mach-Zehnder interferometer as an acoustic line detector,” Appl. Opt. 46, 3352-3358(2007). [CrossRef]
  18. Yu. I. Ostrovsky, M. M. Butusov, and G. V. Ostrovskaya, Interferometry by Holography (Springer-Verlag, 1980).
  19. G. V. Dreiden, Yu. I. Ostrovsky, and M. I. Etinberg, “Interference-holographic study of a process of cavitation bubble collapse,” Pis'ma Zh. Tekh. Fiz. 6, 805-811 (1980).
  20. W. Lauterborn and W. Hentschel, “Cavitation bubble dynamics studied by high speed photography and holography: part one,” Ultrasonics 23, 260-267 (1985). [CrossRef]
  21. T. Balciunas, A. Melninkaitis, G. Tamosauskas, and V. Sirutkaitis, “Time-resolved off-axis digital holography for characterization of ultrafast phenomena in water,” Opt. Lett. 33, 58-60 (2008). [CrossRef]
  22. U. Köpf, “Application of speckling for measuring the deflection of laser light by phase objects,” Opt. Commun. 5, 347-350(1972). [CrossRef]
  23. S. Mallick and M. L. Roblin, “Speckle pattern interferometry applied to the study of phase objects,” Opt. Commun. 6, 45-49 (1972). [CrossRef]
  24. U. Wernekinck and W. Merzkirch, “Speckle photography of spatially extended refractive-index fields,” Appl. Opt. 26, 31-32 (1987). [CrossRef]
  25. J. Lapsien and D. Meiners, “Digital speckle techniques for measuring light deflection profiles of inhomogeneous phase objects,” Appl. Opt. 36, 7180-7187 (1997). [CrossRef]
  26. G. S. Settles, Schlieren and Shadowgraph Techniques (Springer-Verlag, 2001).
  27. S. Minardi, A. Gopal, M. Tatarakis, A. Couairon, G. Tamošauskas, R. Piskarskas, A. Dubietis, and P. Di Trapani, “Time-resolved refractive index and absorption mapping of light-plasma filaments in water,” Opt. Lett. 33, 86-88 (2008). [CrossRef]
  28. J. Ojeda-Castañeda and L. R. Berriel-Valdos, “Classification scheme and properties of schlieren techniques,” Appl. Opt. 18, 3338-3341 (1979). [CrossRef]
  29. T. P. Davies, “Schlieren photography--short bibliography and review,” Opt. Laser Technol. 13, 37-42 (1981). [CrossRef]
  30. I. I. Komissarova, G. V. Ostrovskaya, V. N. Philippov, and E. N. Shedova, “Generation of shock waves in water and in air by CO2 laser radiation focused on the free surface of a liquid,” Tech. Phys. 42, 247-249 (1997). [CrossRef]
  31. M. Frenz, G. Paltauf, and H. Schmidt-Kloiber, “Laser-generated cavitation in absorbing liquid induced by acoustic diffraction,” Phys. Rev. Lett. 76, 3546-3549 (1996). [CrossRef]
  32. W. P. Schiffers, S. J. Shaw, and D. C. Emmony, “Acoustical and optical tracking of the collapse of a laser-generated, cavitation bubble near a solid boundary,” Ultrasonics 36, 559-563 (1998). [CrossRef]
  33. A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100, 148-166(1996). [CrossRef]
  34. D. Palanker, I. Turovets, and A. Lewis, “Dynamics of ArF excimer laser-induced cavitation bubbles in gel surrounded by a liquid medium,” Lasers Surg. Med. 21, 294-300 (1997). [CrossRef]
  35. J. Noack and A. Vogel, “Single-shot spatially resolved characterization of laser-induced shock waves in water,” Appl. Opt. 37, 4092-4099 (1998). [CrossRef]
  36. J. Noack, D. X. Hammer, G. D. Noojin, and A. Vogel, “Influence of pulse duration on mechanical effects after laser-induced breakdown in water,” J. Appl. Phys. 83, 7488-7495(1998). [CrossRef]
  37. A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R. J. Thomas, and B. A. Rockwell, “Influence of optical aberrations on laser-induced plasma formation in water and their consequences for intraocular photodisruption,” Appl. Opt. 38, 3636-3643(1999). [CrossRef]
  38. E. A. Brujan, G. S. Keen, A. Vogel, and J. R. Blake, “The final stage of the collapse of a cavitation bubble close to a rigid boundary,” Phys. Fluids 14, 85-92 (2002). [CrossRef]
  39. E. A. Brujan and A. Vogel, “Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom,” J. Fluid Mech. 558, 281-308 (2006). [CrossRef]
  40. Z.Karny and Z. Kafri, “Refractive-index measurements by moiré deflectometry,” Appl. Opt. 21, 3226-3328 (1982). [CrossRef]
  41. Y. Nakano and K. Murata, “Measurements of phase objects using the Talbot effect and moiré techniques,” Appl. Opt. 23, 2296-2299 (1984). [CrossRef]
  42. M. Wang, “Fourier transform moiré tomography for high-sensitivity mapping asymmetric 3-D temperature field,” Opt. Laser Technol. 34, 679-685 (2002). [CrossRef]
  43. A. Marcano, H. Cabrera, M. Guerra, R. A. Cruz, C. Jacinto, and T. Catunda, “Optimizing and calibrating a mode-mismatched thermal lens experiment for low absorption measurement,” J. Opt. Soc. Am. B 23, 1408-1413 (2006). [CrossRef]
  44. R. Petkovšek, J. Možina, and G. Močnik, “Optodynamic characterization of the shock waves after laser-induced breakdown in water,” Opt. Express 13, 4107-4112 (2005). [CrossRef]
  45. M. A. Harith, V. Palleschi, A. Salvetti, D. P. Singh, G. V. Dreiden, Yu. I. Ostrovsky, and I. V. Semenova, “Dynamics of laser-driven shock waves in water,” J. Appl. Phys. 66, 5194-5197 (1989). [CrossRef]
  46. H. Kleine, H. Grönig, and K. Takayama, “Simultaneous shadow, schlieren and interferometric visualization of compressible flows,” Opt. Lasers Eng. 44, 170-189 (2006).
  47. H. K. Park, D. Kim, and C. P. Grigoropoulos, “Pressure generation and measurement in the rapid vaporization of water on a pulsed-laser-heated surface,” J. Appl. Phys. 80, 4072-4081(1996). [CrossRef]
  48. Y. Mori, K. Shimada, M. Nakahara, and K. Nagayama, “New water shock sensor,” Rev. Sci. Instrum. 72, 2123-2127 (2001). [CrossRef]
  49. J. Lubbers and R. Graaff, “A simple and accurate formula for the sound velocity in water,” Ultrasound Med. Biol. 24, 1065-1068 (1998).
  50. C. Molpeceres, J. A. Porro, G. Gómez, M. Morales, and J. L. Ocaña, “Instrumentación de proceso de tratamiento de materiales por onda de choque generadas por láser (laser shock processing),” Opt. Pura Apl. 36, 51-57 (2003).
  51. C. Rubio-González, J. L. Ocaña, G. Gómez-Rosas, C. Molpeceres, M. Paredes, A. Banderas, J. Porro, and M. Morales, “Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061-T6 aluminum alloy,” Mater. Sci. Eng. A 386, 291-295 (2004).
  52. U. Sánchez-Santana, C. Rubio-González, G. Gómez-Rosas, J. L. Ocaña, C. Molpeceres, J. Porro, and M. Morales, “Wear and friction of 6061-T6 aluminum alloy treated by laser shock processing,” Wear 260, 847-854 (2006). [CrossRef]
  53. ImageJ and its Java source code are freely available at http://rsbweb.nih.gov/ij/index.html
  54. http://www.matweb.com/.
  55. IAPWS 5C, “Release on refractive index of ordinary water substance as a function of wavelength, temperature and pressure” (International Association for the Properties of Water and Steam,September 1997), http://www.iapws.org/relguide/rindex.pdf.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited