OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 19 — Jul. 1, 2009
  • pp: 3681–3690

Optical compensation of distorted data image caused by interference fringe distortion in holographic data storage

Tetsuhiko Muroi, Nobuhiro Kinoshita, Norihiko Ishii, Koji Kamijo, and Naoki Shimidzu  »View Author Affiliations


Applied Optics, Vol. 48, Issue 19, pp. 3681-3690 (2009)
http://dx.doi.org/10.1364/AO.48.003681


View Full Text Article

Enhanced HTML    Acrobat PDF (1529 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Photopolymer materials shrink because of photopolymerization. This shrinkage distorts the recorded interference fringes in a medium made of such material, which in turn degrades the reconstructed image quality. Adaptive optics controlled by a genetic algorithm was developed to optimize the wavefront of the reference beam while reproducing in order to compensate for the interference fringe distortion. We defined a fitness measure for this genetic algorithm that involves the mean brightness and coefficients of the variations of bit data “1” and “0”. In an experiment, the adaptive optics improved the reconstructed image to the extent that data could be reproduced from the entire area of the image, and the signal to noise ratio of the reproduced data could be improved.

© 2009 Optical Society of America

OCIS Codes
(090.2900) Holography : Optical storage materials
(210.2860) Optical data storage : Holographic and volume memories

ToC Category:
Optical Data Storage

History
Original Manuscript: February 13, 2009
Revised Manuscript: June 2, 2009
Manuscript Accepted: June 3, 2009
Published: June 22, 2009

Citation
Tetsuhiko Muroi, Nobuhiro Kinoshita, Norihiko Ishii, Koji Kamijo, and Naoki Shimidzu, "Optical compensation of distorted data image caused by interference fringe distortion in holographic data storage," Appl. Opt. 48, 3681-3690 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-19-3681


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Booth, M. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. USA 99, 5788-5792 (2002). [CrossRef] [PubMed]
  2. M. Booth, T. Wilson, H. Sun, T. Ota, and S. Kawata, “Methods for the characterization of deformable membrane mirror,” Appl. Opt. 44, 5131-5139 (2005). [CrossRef] [PubMed]
  3. N. Ishii, T. Muroi, N. Kinoshita, K. Kamijo, and N. Shimidzu, “A method of phase compensation for holographic data storage,” Jpn. J. Appl. Phys. 46, 3862-3866 (2007). [CrossRef]
  4. N. Ishii, T. Muroi, N. Kinoshita, K. Kamijo, and N. Shimidzu, “Adaptive optics for holographic data storage,” Proc. SPIE 6488, 64880G-1 (2007).
  5. S. Baba, S. Yoshimura, and N. Kihara, “Inter-frame image processing method for recovering holographic images,” Jpn. J. Appl. Phys. 45, 1258-1265 (2006). [CrossRef]
  6. M. Toishi, A. Fukumoto, and K. Watanabe, “Temperature change analysis for hologram recording using photopolymer medium process simulator,” presented at the International Workshop on Holographic Memories 2007, Penang, Malaysia, 26-28 October 2007, paper 27p02.
  7. T. Muroi, N. Kinoshita, N. Ishii, N. Shimidzu, K. Kamijo, M. Booth, R. Jaskaitis, and T. Wilson, “Compensation and improvement of intensity and distribution in reconstructed image using adaptive optics in holographic data storage,” Jpn. J. Appl. Phys. 47, 5900-5903 (2008). [CrossRef]
  8. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer, 2000)
  9. E. J. Fernandez and P. Artal, “Membrane deformable mirror for adaptive optics: performance limits in visual optics,” Opt. Express 11, 1056-1069 (2003). [CrossRef] [PubMed]
  10. X. An and D. Psaltis, “Experimental characterization of an angle-multiplexed holographic memory,” Opt. Lett. 20, 1913-1915 (1995). [CrossRef] [PubMed]
  11. G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, and C. M. Jefferson, “Noise reduction of page-oriented data storage by inverse filtering during recording,” Opt. Lett. 23, 289-291 (1998). [CrossRef]
  12. M. L. Schilling, V. L. Colvin, L. Dhar, A. L. Harris, F. C. Schilling, H. E. Katz, T. Wysocki, A. Hale, L. L. Blyler, and C. Boyd, “Acrylate oligomer-based photopolymers for optical storage applications,” Chem. Mater. 11, 247-254 (1999). [CrossRef]
  13. L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced change in photopolymer volume holograms,” Appl. Phy. Lett. 73, 1337-1339(1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited