OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 19 — Jul. 1, 2009
  • pp: 3695–3701

Electric field sensor array from cavity resonance between optical D-fiber and multiple slab waveguides

Richard Gibson, Richard Selfridge, and Stephen Schultz  »View Author Affiliations


Applied Optics, Vol. 48, Issue 19, pp. 3695-3701 (2009)
http://dx.doi.org/10.1364/AO.48.003695


View Full Text Article

Enhanced HTML    Acrobat PDF (908 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We develop an electric field sensor array based on optical fiber interrogation with electro-optic crystals to measure high energy electromagnetic pulses. D-shaped optical fiber provides the platform for resonant coupling with multiple electro-optic crystals, allowing an array of sensing points on a single strand of optical fiber. Because of its small size, flexibility, and dielectric composition, this sensor array is suitable for performing electric-field analysis at multiple points within an electronic device. Using lithium niobate and potassium titanyl phosphate crystals, the sensor array is sensitive to fields as low as 100 V / m .

© 2009 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: March 24, 2009
Manuscript Accepted: June 6, 2009
Published: June 22, 2009

Citation
Richard Gibson, Richard Selfridge, and Stephen Schultz, "Electric field sensor array from cavity resonance between optical D-fiber and multiple slab waveguides," Appl. Opt. 48, 3695-3701 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-19-3695


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. V. Keuren and J. Knighten, “Implications of the high-power microwave weapon threat in electronic system design,” in 1991 IEEE International Symposium on Electromagnetic Compatibility (IEEE, 1991), pp. 370-371. [CrossRef]
  2. C. R. Miller, “Electromagnetic pulse threats in 2010,” http://stinet.dtic.mil/cgi-bin/GetTRDoc?AD=ADA463475=U2=GetTRDoc.pdf (2005).
  3. G. Gaborit, J. Coutaz, and L. Duvillaret, “Vectorial electric field measurement using isotropic electro-optic crystals,” Appl. Phys. Lett. 90, 241118 (2007). [CrossRef]
  4. W. Kuo, Y. Huang, and S. Huang, “Three-dimensional electric-field vector measurement with an electro-optic sensing technique,” Opt. Lett. 24, 1546-1548 (1999). [CrossRef]
  5. K. Yang, G. David, J. Yook, I. Papapolymerou, L. P. B. Katehi, and J. F. Whitaker, “Electrooptic mapping and finite-element modeling of the near-field pattern of a microstrip patch antenna,” IEEE Trans. Microwave Theory Tech. 48, 288-294(2000). [CrossRef]
  6. J. A. Deibel and J. F. Whitaker, “A fiber-mounted polymer electro-optic-sampling field sensor,” in 2003 IEEE LEOS Annual Meeting Conference Proceedings (IEEE, 2003), pp.786-787.
  7. W. C. Wang, W. Lin, H. Marshall, R. Skolnick, and D. Schaafsma, “All-dielectric miniature wideband rf receive antenna,” Opt. Eng. 43, 673-677 (2004). [CrossRef]
  8. A. Sasaki and R. Nagatsuma, “Reflection-type cw-millimeter-wave imaging with a high-sensitivity waveguide-mounted electro-optic sensor,” Jpn. J. Appl. Phys. Part 2 41, 83-86(2002). [CrossRef]
  9. L. P. B. Katehi, K. Yang, and J. F. Whitaker, “Electric field mapping system using an optical-fiber-based electrooptic probe,” IEEE Microwave Wireless Comp. Lett. 11, 164-166(2001). [CrossRef]
  10. H. Sun, A. Pyajt, J. Luo, Z. Shi, S. Hau, A. K. Y. Jen, L. R. Dalton, and A. Chen, “All-dielectric electrooptic sensor based on a polymer microresonator coupled side-polished optical fiber,” IEEE Sens. J. 7, 515-524 (2007). [CrossRef]
  11. W. Johnstone, K. McCallion, D. Moodie, G. Thursby, G. Fawcett, and M. S. Gill, “In line fiber optic electric field sensing technique without interruption of the fiber,” IEEE Proc. Sci. Meas. Technol. 142, 109-113 (1995). [CrossRef]
  12. R. Gibson, R. Selfridge, S. Schultz, W. Wang, and R. Forber, “Electro-optic sensor from high Q resonance between optical D-fiber and slab waveguide,” Appl. Opt. 47, 2234-2240(2008). [CrossRef] [PubMed]
  13. K. Kim, H. Kwon, J. Song, S. Lee, W. Jung, and S. Kang, “Polarizing properties of optical coupler composed of single mode side-polished fiber and multimode metal-clad planar waveguide,” Opt. Commun. 180, 37-42 (2000). [CrossRef]
  14. R. Gibson, R. Selfridge, S. Schultz, “Improved sensing performance of D-fiber/planar waveguide couplers,” Opt. Express 15, 2139-2144 (2007). [CrossRef] [PubMed]
  15. M. A. Jensen and R. H. Selfridge, “Analysis of etching-induced birefringence changes in elliptic core fibers,” Appl. Opt. 31, 2011-2016 (1992). [CrossRef] [PubMed]
  16. J. M. Kvavle, S. M. Schultz, and R. H. Selfridge, “Low loss elliptical core D-fiber to PANDA fiber fusion splicing,” Opt. Express 16, 13552-13559 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited