OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 19 — Jul. 1, 2009
  • pp: 3702–3708

Compact optical fiber whitelight interferometric distance sensor for arbitrary small distance measurement

Ayan Majumdar and Haiying Huang  »View Author Affiliations

Applied Optics, Vol. 48, Issue 19, pp. 3702-3708 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (905 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A compact optical fiber distance sensor that is capable of measuring arbitrary small distance is produced by fabricating a microsized polymer core at the end of a single mode fiber. The polymer core introduces an additional reflective interface to a conventional Fabry–Perot cavity. As such, sufficient fringes are presented in the whitelight reflectance spectrum of the distance sensor so that arbitrary small distances can be demodulated using the Fourier transformation technique. The performance of the distance sensor is verified experimentally.

© 2009 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.4610) Instrumentation, measurement, and metrology : Optical fabrication
(180.4243) Microscopy : Near-field microscopy

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: March 26, 2009
Manuscript Accepted: May 31, 2009
Published: June 22, 2009

Ayan Majumdar and Haiying Huang, "Compact optical fiber whitelight interferometric distance sensor for arbitrary small distance measurement," Appl. Opt. 48, 3702-3708 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Ferreira, A. B. Lobo Ribeiro, J. L. Santos, and F. Farahi, “Simultaneous measurement of displacement and temperature using a low finesse cavity and a fiber Bragg grating,” IEEE Photonics Technol. Lett. 8, 1519-1521 (1996). [CrossRef]
  2. P. Swart, “Long-period grating Michelson refractometric sensor,” Meas. Sci. Technol. 15, 1576-1580 (2004). [CrossRef]
  3. K. Totsu, Y. Haga, and M. Esashi, “Ultra-miniature fiber-optic pressure sensor using white light interferometry,” J. Micromech. Microeng. 15, 71-75 (2005). [CrossRef]
  4. S. Jiang, B. Zeng, Y. Liang, and B. Li, “Optical fiber sensor for tensile and compressive strain measurements by white-light Fabry-Perot interferometry,” Opt. Eng. 46, 034403(2007). [CrossRef]
  5. Y. Rao, M. Denga, D. Duana, and T. Zhua, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuators A, Phys. A 148, 33-38(2008). [CrossRef]
  6. Q. Shi, Z. Wang, L. Jin, Y. Li, H. Zhang, F. Lu, G. Kai, and X. Dong, “A hollow-core photonic crystal fiber cavity based multiplexed Fabry-Perot interferometric strain sensor system,” IEEE Photonics Technol. Lett. 20, 1329-1331 (2008). [CrossRef]
  7. J. Yi, “Fourier transform white-light interferometry for the measurement of fiber-optic extrinsic Fabry-Perot interferometric sensors,” IEEE Photonics Technol. Lett. 20, 539(2008). [CrossRef]
  8. V. Arya, K. A. Murphy, A. Wang, and R. O. Claus, “Microbend losses in single-mode optical fibers: theoretical and experimental investigation,” J. Lightwave Technol. 13, 1998-2002(1995). [CrossRef]
  9. M. Han, Y. Zhang, F. Shen, G. R. Pickrell, and A. Wang, “Signal-processing algorithm for white-light optical fiber extrinsic Fabry-Perot interferometric sensors,” Opt. Lett. 29, 1736-1738 (2004). [CrossRef] [PubMed]
  10. R. Dunn, “Near-field scanning optical microscopy,” Chem. Rev. 99, 2891-2927 (1999). [CrossRef]
  11. A. Majumer and H. Huang, “Development of an in-fiber white-light interferometric distance sensor for absolute measurement of arbitrary small distances,” Appl. Opt. 47, 2821-2828 (2008). [CrossRef]
  12. S. Lacroix, R. Bourbonnais, F. Gonthier, and J. Bures, “Tapered monomode optical fibers: understanding large power transfer,” Appl. Opt. 25, 4421-4425 (1986). [CrossRef] [PubMed]
  13. S. J. Frisken, “Light-induced optical waveguide uptapers,” Opt. Lett. 18, 1035-1037 (1993). [CrossRef] [PubMed]
  14. A. W. Snyder, “Coupling of modes on a tapered dielectric cylinder,” IEEE Trans. Microwave Theor. Tech. 18, 383-392(1970). [CrossRef]
  15. D. T. Cassidy, D. C. Johnson, and K. O. Hill, “Wavelength-dependent transmission of monomode optical fiber tapers,” Appl. Opt. 24, 945-950 (1985). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited