OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 19 — Jul. 1, 2009
  • pp: 3722–3730

Photonic crystal lens for coupling two waveguides

Margarita I. Kotlyar, Yanis R. Triandaphilov, Alexey A. Kovalev, Victor A. Soifer, Maria V. Kotlyar, and Lim O’Faolain  »View Author Affiliations


Applied Optics, Vol. 48, Issue 19, pp. 3722-3730 (2009)
http://dx.doi.org/10.1364/AO.48.003722


View Full Text Article

Enhanced HTML    Acrobat PDF (1046 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the design, fabrication, and characterization of a new nanophotonic device comprising a two-dimensional photonic crystal (PhC) lens of size 3 × 4 μm fabricated in silicon-on-insulator. The PhC lens is put at the output of a planar waveguide of width 4.5 μm to couple light into a planar waveguide of width 1 μm , with two waveguides being of length 5 mm . A 1 μm off-axis displacement of the smaller waveguide leads to an 8-fold reduction of output light intensity, which means that the focal spot size at output of the PhC lens in silicon is less than 1 μm . The simulation has shown that the PhC lens has maximal transmittance at 1.55 μm , with the coupling efficiency being 73%. The focal spot size of the lens in air calculated at the FWHM is 0.32 λ (where λ is the wavelength).

© 2009 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(130.0130) Integrated optics : Integrated optics
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: December 17, 2008
Revised Manuscript: April 8, 2009
Manuscript Accepted: May 31, 2009
Published: June 23, 2009

Citation
Margarita I. Kotlyar, Yanis R. Triandaphilov, Alexey A. Kovalev, Victor A. Soifer, Maria V. Kotlyar, and Liam O'Faolain, "Photonic crystal lens for coupling two waveguides," Appl. Opt. 48, 3722-3730 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-19-3722


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Xu, R. K. Lee, and A. Yariv, “Adiabatic coupling between conventional dielectric waveguides with discrete translational symmetry,” Opt. Lett. 25, 755-757 (2000). [CrossRef]
  2. A. Mekis and J. D. Joannopoulos, “Tapered couplers for efficient interfacing between dielectric and photonic crystal waveguides,” J. Lightwave Technol. 19, 861-865(2001). [CrossRef]
  3. T. D. Happ, M. Kamp, and A. Forchel, “Photonic crystal tapers for ultracompact mode conversion,” Opt. Lett. 26, 1102-1104(2001). [CrossRef]
  4. A. Talneau, P. Lalanne, M. Agio, and C. M. Soukoulis, “Low-reflection photonic crystal taper for efficient coupling between guide sections of arbitrary widths,” Opt. Lett. 27, 1522-1524(2002). [CrossRef]
  5. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28, 1302-1304(2003). [CrossRef] [PubMed]
  6. P. Bienstman, S. Assefa, S. G. Johson, J. D. Joannopoulos, G. S. Petrich, and L. A. Koloziejski, “Taper structures for coupling into photonic crystal slab waveguides,” J. Opt. Soc. Am. B 20, 1817-1821 (2003). [CrossRef]
  7. S. J. McNab, N. Moll, and Y. A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguide,” Opt. Express 11, 2927-2939 (2003). [CrossRef] [PubMed]
  8. P. E. Barclay, K. Srinivasan, and O. Painter, “Design of photonic crystal waveguide for evanescent coupling to optical fiber tapers and integration with high-Q cavities,” J. Opt. Soc. Am. B 20, 2274-2284 (2003). [CrossRef]
  9. R. Orobtchouk, A. Layadi, H. Gualous, D. Pascal, A. Koster, and S. Laval, “High-efficiency light coupling in a submicrometric silicon-on-insulator waveguide,” Appl. Opt. 39, 5773-5777 (2000). [CrossRef]
  10. S. Lardenois, D. Pascal, L. Vivien, E. Cassan, S. Laval, R. Orobtchouk, M. Heitzmann, N. Bonzaida, and L. Mollard, “Low-loss submicrometer silicon-on-insulator rib waveguides and corner mirrors,” Opt. Lett. 28, 1150-1153 (2003). [CrossRef] [PubMed]
  11. D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fiber and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071-6077 (2006). [CrossRef]
  12. F. Van Laere, G. Roelkens, M. Ayre, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and high efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol. 25, 151-156 (2007). [CrossRef]
  13. B. L. Bachim, O. O. Ogunsola, and T. K. Gaylord, “Optical fiber-to-waveguide coupling using carbon-dioxide-laser-induced long-period fiber gratings,” Opt. Lett. 30, 2080-2082 (2005). [CrossRef] [PubMed]
  14. D. W. Prather, J. Murakowski, S. Shi, S. Venkataraman, A. Sharkawy, C. Chen, and D. Pustai, “High-efficiency coupling structure for a single-line-defect photonic crystal waveguide,” Opt. Lett. 27, 1601-1603 (2002). [CrossRef]
  15. H. Kim, S. Lee, B. O. S. Park, and E. Lee, “High efficiency coupling technique for photonic crystal waveguides using a waveguide lens,” in Frontiers in Optics, 2003 OSA Technical Digest Series (Optical Society of America, 2003), paper MT68.
  16. J. C. W. Corbett and J. R. Allington-Smith, “Coupling starlight into single-mode photonic crystal fiber using a field lens,” Opt. Express 13, 6527-6540 (2005). [CrossRef] [PubMed]
  17. D. Michaelis, C. Wachter, S. Burger, L. Zschiedrich, and A. Brauer, “Micro-optical assisted high-index waveguide coupling,” Appl. Opt. 45, 1831-1838 (2006). [CrossRef] [PubMed]
  18. G. Kong, J. Kim, H. Choi, J. E. Im, B. Park, V. Paek, and B. H. Lee, “Lensed photonic crystal fiber obtained by use of an arc discharge,” Opt. Lett. 31, 894-896 (2006). [CrossRef] [PubMed]
  19. A. L. Pokrovsky and A. L. Efros, “Lens based on the use of left-handed materials,” Appl. Opt. 42, 5701-5705 (2003). [CrossRef] [PubMed]
  20. N. Fabre, S. Fasquel, C. Legrand, X. Melique, M. Muller, M. Francois, O. Vanbesien, and D. Lippens, “Toward focusing using photonic crystal flat lens,” Opto-Electron. Rev. 14, 225-232 (2006). [CrossRef]
  21. C. Li, M. Holt, and A. L. Efros, “Far-field imaging by the Veselago lens made of a photonic crystal,” J. Opt. Soc. Am. B 23, 490-497 (2006). [CrossRef]
  22. T. Matsumoto, K. Eom, and T. Baba, “Focusing of light by negative refraction in a photonic crystal slab superlens on silicon-on-insulator substrate,” Opt. Lett. 31, 2786-2788(2006). [CrossRef] [PubMed]
  23. C. Y. Li, J. M. Holt, and A. L. Efros, “Imaging by the Veselago lens based upon a two-dimensional photonic crystal with a triangular lattice,” J. Opt. Soc. Am. B 23, 963-968(2006). [CrossRef]
  24. T. Geng, T. Lin, and S. Zhuang, “All angle negative refraction with the effective phase index of −1,” Chin. Opt. Lett. 5, 361-363 (2007).
  25. T. Asatsume and T. Baba, “Abberation reduction and unique light focusing in a photonic crystal negative refractive lens,” Opt. Express 16, 8711-8718 (2008). [CrossRef]
  26. N. Fabre, L. Lalonat, B. Cluzel, X. Melique, D. Lippens, F. deFornel, and O. Vanbesien, “Measurement of a flat lens focusing in a 2D photonic crystal at optical wavelength,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CTuDD6. [PubMed]
  27. S. Yang, C. Hong, and H. Yang, “Focusing concave lens photonic crystals with magnetic materials,” J. Opt. Soc. Am. A 23, 956-959 (2006). [CrossRef]
  28. P. Luan and K. Chang, “Photonic crystal lens coupler using negative refraction,” PIERS Online 3, 91-95 (2007). [CrossRef]
  29. S. Haxha and F. AbdelMalek, “A novel design of photonic crystal lens based on negative refractive index,” PIERS Online 4, 296-300 (2008). [CrossRef]
  30. Z. Lu, S. Shi, C. A. Schuetz, J. A. Murakowski, and D. Prather, “Three-dimensional photonic crystal flat lens by full 3D negative refraction,” Opt. Express 13, 5592-5599 (2005). [CrossRef] [PubMed]
  31. Z. Lu, S. Shi, C. A. Schuetz, and D. W. Prather, “Experimental demonstration of negative refraction imaging in both amplitude and phase,” Opt. Express 13, 2007-2012 (2005). [CrossRef] [PubMed]
  32. I. V. Minin, O. V. Minin, Y. R. Triandafilov, and V. V. Kotlyar, “Subwavelength diffractive photonic crystal lens,” Prog. Electromagn. Res. B 7, 257-264 (2008). [CrossRef]
  33. J. P. Hugonin, P. Lalanne, T. P. White, and T. F. Krauss, “Coupling into a low-mode photonic crystal waveguide,” Opt. Lett. 32, 2638-2640 (2007). [CrossRef] [PubMed]
  34. E. Pshenay-Severin, C. C. Chen, T. Pertsch, M. Augustin, A. Chipoline, and A. Tunnermann, “Photonic crystal lens for photonic crystal waveguide coupling,” in Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference, Technical Digest (CD) (Optical Society of America, 2006), CThK3. [CrossRef]
  35. Ya. R. Triandafilov and V. V. Kotlyar, “A photonic crystal Mikaelian lens,” Computer Opt. 31, 27-31 (2007) (in Russian).
  36. Y. R. Triandafilov and V. V. Kotlyar, “Photonic crystal Mikaelian lens,” Opt. Mem. Neural Netw. 17, 1-7 (2008).
  37. A. L. Mikaelian, “Harnessing medium properties for wave focusing,” Dokl. Akad. Nauk SSSR 81, 2406-2415 (1951) (in Russian).
  38. L. O'Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De La Rue, and T. F. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron. Lett. 42, 1454-1455 (2006). [CrossRef]
  39. D. M. Beggs, L. O' Faolain, and T. F. Krauss “Accurate determination of the functional hole size in photonic crystal slabs using optical methods”, Photon. Nanostr. Fundam. Appl. 6, 213-218 (2008). [CrossRef]
  40. Q. Wu, J. M. Gibbons, and W. Park “Graded negative index lens by photonic crystal”, Opt. Express 16, 16941-16949(2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited