OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 19 — Jul. 1, 2009
  • pp: 3742–3749

Laser speckle reduction via colloidal-dispersion-filled projection screens

Falko Riechert, Georg Bastian, and Uli Lemmer  »View Author Affiliations


Applied Optics, Vol. 48, Issue 19, pp. 3742-3749 (2009)
http://dx.doi.org/10.1364/AO.48.003742


View Full Text Article

Enhanced HTML    Acrobat PDF (400 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We use projection screens filled with colloidal dispersions to reduce laser speckle in laser projection systems. Laser light is multiply scattered at the globules of the colloidal dispersion’s internal phase, which do Brownian movement. The integration time of the human eye causes a perception of a reduced laser speckle contrast because of temporal averaging. As a counteracting effect, blurring of projected images occurs in the colloidal dispersion, which degrades image quality. We measure and compare speckle reduction and blurring of three different colloidal dispersions filled into transmission screens of different thicknesses. We realized a high speckle contrast reduction at simultaneously low blurring with a thin screen filled with a highly scattering colloidal dispersion with forward-peaked scattering. We realize speckle contrast values below 3% at acceptable blurring.

© 2009 Optical Society of America

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(030.4280) Coherence and statistical optics : Noise in imaging systems
(030.6140) Coherence and statistical optics : Speckle
(290.4210) Scattering : Multiple scattering
(290.7050) Scattering : Turbid media
(290.2558) Scattering : Forward scattering

ToC Category:
Scattering

History
Original Manuscript: April 30, 2009
Manuscript Accepted: June 6, 2009
Published: June 24, 2009

Citation
Falko Riechert, Georg Bastian, and Uli Lemmer, "Laser speckle reduction via colloidal-dispersion-filled projection screens," Appl. Opt. 48, 3742-3749 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-19-3742


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts, 2006).
  2. L. Wang, T. Tschudi, T. Halldórsson, and P. R. Pétursson, “Speckle reduction in laser projection systems by diffractive optical elements,” Appl. Opt. 37, 1770-1775 (1998). [CrossRef]
  3. S. C. Shin, S. S. Yoo, S. Y. Lee, C.-Y. Park, S.-Y. Park, J. W. Kwon, and S.-G. Lee, “Removal of hot spot speckle on laser projection screen using both the running screen and the rotating diffuser,” Displays 27, 91-96 (2006). [CrossRef]
  4. C. E. Hauber and R. E. Kittredge, U.S. patent 3,473,862 (21 October 1969).
  5. I. Leifer, C. J. D. Spencer, and W. T. Welford, “Grainless screens for projection microscopy,” J. Opt. Soc. Am. 51, 1422-1423(1961). [CrossRef]
  6. E. G. Rawson, A. B. Nafarrate, R. E. Norton, and J. W. Goodman, “Speckle-free rear-projection screen using two close screens in slow relative motion,” J. Opt. Soc. Am. 66, 1290-1294 (1976). [CrossRef]
  7. F. S. MacAdam, Taylor, Taylor & Hobson, Ltd., British patent 592,815 (1947).
  8. R. Brown, “A brief account of microscopical observations made in the months of June, July and August, 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies,” Philos. Mag. 4, 161-173 (1828).
  9. V. Yurlov, A. Lapchuk, S. Yun, J. G. Song, and H. Yang, “Speckle suppression in scanning laser display,” Appl. Opt. 47, 179-187 (2008). [CrossRef] [PubMed]
  10. J. Trotter, Das Auge (DOZ-Verlag, 1985).
  11. H. Kolb, E. Fernandez, R. Nelson, and B. W. Jones, “Webvision--the organization of the retina and visual system,” http://webvision.med.utah.edu.
  12. J. R. Frisvad, N. J. Christensen, and H. W. Jensen, “Computing the scattering properties of participating media using Lorenz-Mie theory,” ACM Trans. Graph. 26, 60 (2007). [CrossRef]
  13. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2nd ed. (Society of Photo-Optical Instrumentation Engineers, 2007).
  14. J. R. Frisvad, Light, Matter, and Geometry: The Cornerstones of Appearance Modelling (VDM Verlag, 2008).
  15. J. R. Frisvad, Department of Informatics and Mathematical Modeling, Technical University of Denmark, Richard Petersens Plads, 2800 Lyngby, Denmark (personal communication, 2009).
  16. L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modelling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995). [CrossRef] [PubMed]
  17. L. Wang, S. L. Jacques, and L. Zheng, “CONV--convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Methods Programs Biomed. 54, 141-150 (1997). [CrossRef]
  18. R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110 (2005). [CrossRef]
  19. D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing-wave spectroscopy,” Phys. Rev. Lett. 60, 1134-1137(1988). [CrossRef] [PubMed]
  20. K. K. Bizheva, A. M. Siegel, and D. A. Boas, “Path-length-resolved dynamic light scattering in highly scattering random media: the transition to diffusing wave spectroscopy,” Phys. Rev. E 58, 7664-7667 (1998). [CrossRef]
  21. R. Carminati, R. Elaloufi, and J.-J. Greffet, “Beyond the diffusing-wave spectroscopy model for the temporal fluctuations of scattered light,” Phys. Rev. Lett. 92, 213903 (2004). [CrossRef] [PubMed]
  22. S. Ulyanov, “Diffusing wave spectroscopy with a small number of scattering events: an implication to microflow diagnostics,” Phys. Rev. E 72, 052902 (2005). [CrossRef]
  23. A. Einstein, “Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen,” Ann. Phys. 322, 549-560 (1905). [CrossRef]
  24. M. Heckmeier and G. Maret, “Visualization of flow in multiple-scattering liquids,” Europhys. Lett. 34, 257-262 (1996). [CrossRef]
  25. P.-A. Lemieux, M. U. Vera, and D. J. Durian, “Diffusing-light spectroscopies beyond the diffusion limit: the role of ballistic transport and anisotropic scattering,” Phys. Rev. E 57, 4498-4515 (1998). [CrossRef]
  26. D. A. Zimnyakov and Y. P. Sinichkin, “A study of polarization decay as applied to improved imaging in scattering media,” J. Opt. A Pure Appl. Opt. 2, 200-208 (2000). [CrossRef]
  27. M. Xu and R. R. Alfano, “Random walk of polarized light in turbid media,” Phys. Rev. Lett. 95, 213901 (2005). [CrossRef] [PubMed]
  28. L. F. Rojas-Ochoa, D. Lacoste, R. Lenke, P. Schurtenberger, and F. Scheffold, “Depolarization of backscattered linearly polarized light,” J. Opt. Soc. Am. A 21, 1799-1804 (2004). [CrossRef]
  29. F. Riechert, F. Glöckler, and U. Lemmer, “Method to determine the speckle characteristics of front projection screens,” Appl. Opt. 48, 1316-1321 (2009). [CrossRef] [PubMed]
  30. F. Riechert, G. Craggs, Y. Meuret, B. Van Giel, H. Thienpont, U. Lemmer, and G. Verschaffelt, “Low speckle laser projection with a broad-area vertical-cavity surface-emitting laser in the nonmodal emission regime,” Appl. Opt. 48, 792-798(2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited