OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 19 — Jul. 1, 2009
  • pp: 3839–3845

Compact, passively Q-switched, all-solid-state master oscillator–power amplifier-optical parametric oscillator (MOPA-OPO) system pumped by a fiber-coupled diode laser generating high-brightness, tunable, ultraviolet radiation

Peter Peuser, Willi Platz, Andreas Fix, Gerhard Ehret, Alexander Meister, Matthias Haag, and Paul Zolichowski  »View Author Affiliations

Applied Optics, Vol. 48, Issue 19, pp. 3839-3845 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (509 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on a compact, tunable ultraviolet laser system that consists of an optical parametric oscillator (OPO) and a longitudinally diode-pumped Nd:YAG master oscillator–power amplifier (MOPA). The pump energy for the whole laser system is supplied via a single delivery fiber. Nanosecond pulses are produced by an oscillator that is passively Q-switched by a Cr 4 + : YAG crystal. The OPO is pumped by the second harmonic of the Nd:YAG MOPA. Continuously tunable radiation is generated by an intracavity sum- frequency mixing process within the OPO in the range of 245 260 nm with high beam quality. Maximum pulse energies of 1.2 mJ were achieved, which correspond to an optical efficiency of 3.75%, relating to the pulse energy of the MOPA at 1064 nm .

© 2009 Optical Society of America

OCIS Codes
(140.3280) Lasers and laser optics : Laser amplifiers
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.3600) Lasers and laser optics : Lasers, tunable
(140.3610) Lasers and laser optics : Lasers, ultraviolet
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 17, 2009
Revised Manuscript: May 26, 2009
Manuscript Accepted: June 12, 2009
Published: June 29, 2009

Peter Peuser, Willi Platz, Andreas Fix, Gerhard Ehret, Alexander Meister, Matthias Haag, and Paul Zolichowski, "Compact, passively Q-switched, all-solid-state master oscillator-power amplifier-optical parametric oscillator (MOPA-OPO) system pumped by a fiber-coupled diode laser generating high-brightness, tunable, ultraviolet radiation," Appl. Opt. 48, 3839-3845 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Fix, M. Wirth, A. Meister, G. Ehret, M. Pesch, and D. Weidauer, “Tunable ultraviolet optical parametric oscillator for differential absorption lidar measurements of tropospheric ozone,” Appl. Phys. B 75, 153-163 (2002). [CrossRef]
  2. D. M. Lubman, ed., Lasers and Mass Spectrometry (Oxford U. Press, New York, 1990).
  3. P. Misra and M. A. Dubinskii, eds., Ultraviolet Spectroscopy and UV Lasers, Vol. 30 of Practical Spectroscopy Series (CRC Press, 2002). [CrossRef]
  4. C. Illenseer, H.-G. Löhmannsröben, and R. Schultze, “Application of laser-based ion mobility (IM) spectrometry for the analysis of polycyclic aromatic compounds (PAC) and petroleum products in soils,” J. Environ. Monitor. 5, 780-785 (2003). [CrossRef]
  5. S. Imai, T. Yamada, Y. Fujimori, and K. Ishikawa, “Third-harmonic generation of an alexandrite laser in β−BaB2O4,” Appl. Phys. Lett. 54, 1206-1208 (1989). [CrossRef]
  6. J. Lublinski, M. Müller, F. Laeri, and K. Vogler, “Collinear and non-collinear sum-frequency mixing in β−BBO for a tunable 195-198 nm all-solid-state laser system,” Appl. Phys. B 61, 529-532 (1995). [CrossRef]
  7. S. B. Mirov, V. V. Fedorov, B. Boczar, R. Frost, and B. Pryor, “All-solid-state laser system tunable in deep ultraviolet based on sum-frequency generation in CLBO,” Opt. Commun. 198, 403-406 (2001). [CrossRef]
  8. M. Funayama, K. Mukaihara, H. Morita, T. Okada, N. Tomonaga, J. Izumi, and M. Maeda, “Continuously tunable coherent source over 202-3180 nm based on a Ti:sapphire laser,” Opt. Commun. 102, 457-460 (1993). [CrossRef]
  9. T. Meguro, T. Caughey, L. Wolf, and Y. Aoyagi, “Solid-state tunable deep-ultraviolet laser system from 198 to 300 nm,” Opt. Lett. 19, 102-104 (1994). [CrossRef] [PubMed]
  10. D. J. Binks, P. S. Golding, and T. A. King, “Compact all-solid-state high repetition rate tunable ultraviolet source for airborne atmospheric gas sensing,” J. Mod. Opt. 47, 1899-1912 (2000). [CrossRef]
  11. J. Sakuma, K. Deki, A. Finch, Y. Ohsako, and T. Yokota, “All-solid-state, high-power, deep-UV laser system based on cascaded sum-frequency mixing in CsLiB6O10 crystals,” Appl. Opt. 39, 5505-5511 (2000). [CrossRef]
  12. F. Huang, Q. Lou, T. Yu, J. Dong, B. Lei, and Y. Wie, “Tunable solid state UV laser,” Opt. Laser Technol. 33, 111-115 (2001). [CrossRef]
  13. K. A. Elsayed, S. Chen, L. B. Petway, B. L. Meadows, W. D. Marsh, W. C. Edwards, J. C. Barnes, and R. J. DeYoung, “High-energy, efficient, 30 Hz ultraviolet laser sources for airborne ozone-lidar systems,” Appl. Opt. 41, 2734-2739 (2002). [CrossRef] [PubMed]
  14. A. V. Kachynski, V. A. Orlovich, A. A. Bui, V. D. Kopachevsky, A. V. Kudryakov, and W. Kiefer, “All solid-state pulsed ultraviolet laser widely tunable down to 188.5 nm,” Opt. Commun. 218, 351-357 (2003). [CrossRef]
  15. J. F. Pinto, L. Esterowitz, and G. H. Rosenblatt, “Frequency tripling of a Q-switched Cr:LiSAF laser to the UV region,” IEEE J. Sel. Top. Quantum Electron. 1, 58-61 (1995). [CrossRef]
  16. A. Borsutzky, R. Brünger, and R. Wallenstein, “Tunable UV radiation at short wavelengths (188-240 nm) generated by sum frequency mixing in lithium borate,” Appl. Phys. B 52, 380 (1991). [CrossRef]
  17. B. Wu, F. Xie, C. Chen, D. Deng, and Z. Xu, “Generation of tunable coherent vacuum ultraviolet radiation in LiB3O5 crystal,” Opt. Commun. 88, 451-454 (1992). [CrossRef]
  18. I. Horn, D. Günther, and M. Guillong, “Evaluation and design of a solid-state 193 nm OPO-Nd:YAG laser ablation system,” Spectrochim. Acta Part B 58, 1837-1846 (2003). [CrossRef]
  19. D. J. Armstrong and A. V. Smith, “All solid-state high-efficiency tunable UV source for airborne or satellite-based ozone DIAL systems,” IEEE J. Sel. Top. Quantum Electron. 13, 721-731 (2007). [CrossRef]
  20. M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Tailored UV-laser source for fluorescence spectroscopy of biomolecules,” Opt. Lasers Eng. 45, 444-449 (2007). [CrossRef]
  21. A. Fix and G. Ehret, “Intracavity frequency mixing in pulsed optical parametric oscillators for the efficient generation of continuously tunable ultraviolet radiation,” Appl. Phys. B 67, 331-338 (1998). [CrossRef]
  22. P. Peuser, W. Platz, P. Zeller, T. Brand, M. Haag, and B. Köhler, “High-power, longitudinally fiber-pumped, passively Q-switched Nd:YAG oscillator-amplifier,” Opt. Lett. 31, 1991-1993 (2006). [CrossRef] [PubMed]
  23. S. Forget, F. Balembois, P. Georges, P.-J. Devilder, “A new 3D multipass amplifier based on Nd:YAG or Nd:YVO4 crystals,” Appl. Phys. B 75, 481-485 (2002). [CrossRef]
  24. D. Kracht, S. Hahn, R. Huss, J. Neumann, R. Wilhelm, M. Frede, and P. Peuser, “High efficiency, passively Q-switched Nd:YAG MOPA for spaceborne laser-altimetry,” Proc. SPIE 6100, 610021 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited