OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 2 — Jan. 10, 2009
  • pp: 176–182

Quasi-analytical determination of noise-induced error limits in lidar retrieval of aerosol backscatter coefficient by the elastic, two-component algorithm

Michaël Sicard, Adolfo Comerón, Francisco Rocadenbosch, Alejandro Rodríguez, and Constantino Muñoz  »View Author Affiliations


Applied Optics, Vol. 48, Issue 2, pp. 176-182 (2009)
http://dx.doi.org/10.1364/AO.48.000176


View Full Text Article

Enhanced HTML    Acrobat PDF (421 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The elastic, two-component algorithm is the most common inversion method for retrieving the aerosol backscatter coefficient from ground- or space-based backscatter lidar systems. A quasi-analytical formulation of the statistical error associated to the aerosol backscatter coefficient caused by the use of real, noise-corrupted lidar signals in the two-component algorithm is presented. The error expression depends on the signal-to-noise ratio along the inversion path and takes into account “instantaneous” effects, the effect of the signal-to-noise ratio at the range where the aerosol backscatter coefficient is being computed, as well as “memory” effects, namely, both the effect of the signal-to-noise ratio in the cell where the inversion is started and the cumulative effect of the noise between that cell and the actual cell where the aerosol backscatter coefficient is evaluated. An example is shown to illustrate how the “instantaneous” effect is reduced when averaging the noise-contaminated signal over a number of cells around the range where the inversion is started.

© 2009 Optical Society of America

OCIS Codes
(010.1100) Atmospheric and oceanic optics : Aerosol detection
(010.1110) Atmospheric and oceanic optics : Aerosols
(010.3640) Atmospheric and oceanic optics : Lidar
(280.1100) Remote sensing and sensors : Aerosol detection
(280.3640) Remote sensing and sensors : Lidar
(280.1350) Remote sensing and sensors : Backscattering

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: June 19, 2008
Revised Manuscript: November 18, 2008
Manuscript Accepted: November 20, 2008
Published: January 7, 2009

Citation
Michaël Sicard, Adolfo Comerón, Francisco Rocadenbosch, Alejandro Rodríguez, and Constantino Muñoz, "Quasi-analytical determination of noise-induced error limits in lidar retrieval of aerosol backscatter coefficient by the elastic, two-component algorithm," Appl. Opt. 48, 176-182 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-2-176


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Forster, V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. W. Fahey, J. Haywood, J. Lean, D. C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, and R. Van Dorland, “Changes in atmospheric constituents and in radiative forcing,” in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, eds. (Cambridge Univ. Press, 2007), pp. 129-234.
  2. J. Bösenberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, and M. Wiegner, “EARLINET: A European aerosol research lidar network,” in Advances in Laser Remote Sensing of the Atmosphere, A. Dabas, C. Loth, and J. Pelon, eds. (Edition Ecole Polytechnique, 2001), pp. 155-158.
  3. E. J. Welton, J. R. Campbell, J. D. Spinhirne, and V. S. Scott, “Global monitoring of clouds and aerosols using a network of micro-pulse lidar systems,” Proc. SPIE 4153, 151-158 (2001). [CrossRef]
  4. R. Hoff, G. Pappalardo, and J. Bösenberg, “GAW Aerosol Lidar Observations Network (GALION),” paper presented at the Symposium on Recent Developments in Atmospheric Applications of Radar and Lidar of the 88th annual meeting of the American Meteorological Society, New Orleans, Louisiana, US, 20-24 July 2008.
  5. D. Winker, J. Pelon, and M. McCormick, “Initial results from CALIPSO,” in Reviewed and Revised Papers Presented at the 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (Tokyo Metropolitan Univ., 2006), pp. 991-994.
  6. D. Winker, W. Hunt, and M. McGill, “Initial performance assessment of CALIOP,” Geophys. Res. Lett. 34, L19803 (2007). [CrossRef]
  7. P. Dubock, M. Endmann, and P. Ingmann, “Progress with ADM-Aeolus, the Spaceborne Doppler Wind Lidar ADM,” in Reviewed and Revised Papers Presented at the 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (Tokyo Metropolitan Univ., 2006), pp. 1011-1014.
  8. A. Hélière, J. L. Vézy, A. Lefebvre, W. Leibrandt, C. C. Lin, T. Wehr, T. Kimura, and H. Kumagai, “The ESA EarthCARE Mission: mission concept and lidar instrument pre-development,” in Reviewed and Revised Papers Presented at the 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (Tokyo Metropolitan Univ., 2006), pp. 1041-1044.
  9. F. G. Fernald, B. M. Herman, and J. A. Reagan, “Determination of aerosol height distribution by lidar,” J. Appl. Meteorol. 11, 482-489 (1972). [CrossRef]
  10. F. G. Fernald, “Comments on the analysis of atmospheric lidar observations,” in Proceedings of the 11th International Laser Radar Conference, NASA Conf. Publ. 2228, 213-215 (1982).
  11. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652-653 (1984). [CrossRef] [PubMed]
  12. E. W. Barrett and O. Ben-Dov, “Application of the lidar to air pollution measurements,” J. Appl. Meteorol. 6, 500-515 (1967). [CrossRef]
  13. W. Viezee, E. E. Uthe, and R. T. H. Collis, “Lidar observations of airfield approach conditions: an exploratory study,” J. Appl. Meteorol. 8, 274-283 (1969). [CrossRef]
  14. P. A. Davis, “The analysis of lidar signatures of cirrus clouds,” Appl. Opt. 8, 2099-2102 (1969). [CrossRef] [PubMed]
  15. W. Hitschfeld and J. Bordan, “Errors inherent in the radar measurement of rainfall at attenuating wavelengths,” J. Atmos. Sci. 11, 58-67 (1954).
  16. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211-220 (1981). [CrossRef] [PubMed]
  17. Y. Sasano and H. Nakane, “Significance of the extinction/backscatter ratio and the boundary value term in the solution for the two-component lidar equation,” Appl. Opt. 23, 11-13(1984). [CrossRef]
  18. Q. Jinhuan, “Sensitivity of lidar equation solution to boundary values and determination of the values,” Adv. Atmos. Sci. 5, 229-241 (1988). [CrossRef]
  19. M. Matsumoto and N. Takeuchi, “Effects of misestimated far-end boundary values on two common lidar inversion solutions,” Appl. Opt. 33, 6451-6456 (1994). [CrossRef] [PubMed]
  20. L. R. Bissonnette, “Sensitivity analysis of lidar inversion algorithms,” Appl. Opt. 25, 2122-2125 (1986). [CrossRef] [PubMed]
  21. F. Rocadenbosch and A. Comerón, “Error analysis for the lidar backward inversion algorithm,” Appl. Opt. 38, 4461-4474(1999). [CrossRef]
  22. H. G. Hughes, J. A. Ferguson, and D. H. Stephens, “Sensitivity of a lidar inversion algorithm to parameters relating atmospheric backscatter and extinction,” Appl. Opt. 24, 1609-1613(1985). [CrossRef] [PubMed]
  23. Y. Sasano, E. V. Browell, and S. Ismail, “Error caused by using a constant extinction/backscattering ratio in the lidar solution,” Appl. Opt. 24, 3929-3932 (1985). [CrossRef] [PubMed]
  24. A. Comerón, F. Rocadenbosch, M. A. López, A. Rodríguez, C. Muñoz, D. García-Vizcaíno, and M. Sicard, “Effects of noise on lidar data inversion with the backward algorithm,” Appl. Opt. 43, 2572-2577 (2004). [CrossRef] [PubMed]
  25. A. Papoulis, Probability, Random Variables and Stochastic Processes,” (McGraw-Hill, 1965), Sect. 16-5.
  26. A. Papoulis, Probability, Random Variables and Stochastic Processes,” (McGraw-Hill, 1965), Sect. 8.4.
  27. B. A. Bodhaine, N. B. Wood, E. G. Dutton, and J. R. Slusser, “On Rayleigh optical depth calculations,” J. Atmos. Ocean Technol. 16, 1854-1861 (1999). [CrossRef]
  28. T. Trickl, Forschungszentrum Karlsruhe, Institut für Meteorologie und Klimaforschung (IMK-IFU), Kreuzeckbahnstrasse 19, D-82467 Garmisch-Partenkirchen, Germany, private communication, 1 October 2008.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited