OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 2 — Jan. 10, 2009
  • pp: 198–205

Probing technique using circular motion of a microsphere controlled by optical pressure for a nanocoordinate measuring machine

Masaki Michihata, Yuto Nagasaka, Terutake Hayashi, and Yasuhiro Takaya  »View Author Affiliations

Applied Optics, Vol. 48, Issue 2, pp. 198-205 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1148 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new surface probing technique using the circular motion of an optically-trapped microsphere is proposed for a nanocoordinate measuring system. The probe sphere is oscillated circularly in the plane perpendicular to the probe axis and the circular orbit of the probe sphere is monitored for the detection of the position and normal vector direction of the surface. The principle of detection is based on changes in the circular orbit of the microsphere. When the probe approaches a work surface, the orbit of the probe sphere becomes elliptical. The minor-axis length and the minor-axis angle of the ellipse are then used as parameters to detect the position and normal vector direction of the surface, respectively. In this study, the circular motion probe is shown to have a resolution of position detection of 39 nm , and the accuracy of measuring a normal vector to the surface is on the order of 3 ° .

© 2009 Optical Society of America

OCIS Codes
(120.1880) Instrumentation, measurement, and metrology : Detection
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: July 14, 2008
Revised Manuscript: November 19, 2008
Manuscript Accepted: November 28, 2008
Published: January 7, 2009

Masaki Michihata, Yuto Nagasaka, Terutake Hayashi, and Yasuhiro Takaya, "Probing technique using circular motion of a microsphere controlled by optical pressure for a nanocoordinate measuring machine," Appl. Opt. 48, 198-205 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. N. Hansen, K. Carneiro, H. Haitjema, and L. De Chiffre, “Dimensional micro- and nano-metrology,” CIRP Annals 55, 721-743 (2006). [CrossRef]
  2. T. P. Feifer, R. Freudenberg, G. Dussler, and B. Brocher, “Quality control and process observation for the micro assembly process,” Measurement 30, 1 (2001). [CrossRef]
  3. R. Leach, J. Haycocks, K. Jackson, A. Lewis, S. Oldfield, and A. Yacoot, “Advances in traceable nanometrology at the National Physical Laboratory,” Nanotechnology 12, R1-R6 (2001). [CrossRef]
  4. U. Brand and J. Kirchhoff, “A micro-CMM with metrology frame for low uncertainty measurements,” Meas. Sci. Technol. 16, 2489-2497 (2005). [CrossRef]
  5. M. M. P. A. Vermeulen, P. C. J. N. Rosielle, P. H. J. Schellekens, “Design of a high-precision 3D-coordinate measuring machine,” CIRP Annals 47, 447-450 (1998). [CrossRef]
  6. A. Kung, F. Meli, and R. Thalmann, “Ultraprecision micro-CMM using a low force 3D touch probe,” Meas. Sci. Technol. 18, 319-327 (2007). [CrossRef]
  7. M. Michihata, Y. Takaya, and T. Hayashi, “Development of the nano-probe system based on the laser trapping technique,” CIRP Annals 57, 493-496 (2008). [CrossRef]
  8. S. W. Kim, “New design of precision CMM based upon volumetric phase-measuring interferometry,” CIRP Annals 50, 357-360 (2001). [CrossRef]
  9. M. Gruhlke and H. Rothe, “Combining coordinate measurement and nanometrology for large-range nanoscale metrology,” Proc. SPIE 6648, 66480I (2007). [CrossRef]
  10. S. Cao, U. Brand, T. Kleine-Besten, W. Hoffmann, H. Schwenke, S. Butefischa, and S. Buttgenbach, “Recent developments in dimensional metrology for microsystem components,” Microsystem Technologies 8, 3-6 (2002). [CrossRef]
  11. H. Schwenke, F. Hartig, K. Wendt, and F. Waldele, “Future challenges in coordinate metrology: addressing metrological problems for very small and very large parts,” presented at the International Display Workshop, Knoxville, Tennessee, 7-10 May 2001.
  12. Y. Takaya, S. Takahashi, and T. Miyoshi, “Development of the nano-CMM probe based on laser trapping technology,” CIRP Annals 48, 421-424 (1999). [CrossRef]
  13. A. Weckenmann, T. Estler, G. Peggs, and D. McMurtry, “Probing systems in dimensional metrology,” CIRP Annals 53, 657-684 (2004). [CrossRef]
  14. A. Weckenmann, G. N. Peggs, and J. Hoffmann, “Probing systems for dimensional micro- and nano-metrology,” Meas. Sci. Technol. 17, 504-509 (2006). [CrossRef]
  15. IBS Precision Engineering: http://www.ibspe.com/.
  16. G. N. Peggs, A. J. Lewis, and S. Oldfield, “Design for a compact high-accuracy CMM,” CIRP Annals 48, 417-420 (1999). [CrossRef]
  17. H. Haitjema, W. O. Pri, and P. H. J. Schellekens, “Development of a silicon-based nanoprobe system for 3-D measurements,” CIRP Annals 50, 365-368 (2001). [CrossRef]
  18. H. Schwenke, F. Waldele, C. Weiskirch, and H. Kunzmann, “Opto-tactile sensor for 2D and 3D measurement of small structures on coordinate measuring machines,” CIRP Annals 50, 361-364 (2001). [CrossRef]
  19. F. Meli, M. Fracheboud, S. Bottinelli, M. Bieri, R. Thalmann, J. M. Breguet, and R. Clavel, “High precision, low force 3D touch probe for measurements on small objects,” in EUSPEN International Topical Conference on Precision Engineering, Micro Technology, Measurement Techniques and Equipment 2003. Proceedings. Vol. 2, M. Weck, ed. (Voerde, 2003), pp. 411-414.
  20. K. Hidaka, “Study of a small-sized ultrasonic probe,” CIRP Annals 55, 567-570 (2006). [CrossRef]
  21. ISO 10360-1 (2000).
  22. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156-159 (1970). [CrossRef]
  23. A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. 94, 4853-4860 (1997). [CrossRef] [PubMed]
  24. R. C. Gauthier, R. N. Tait, H. Mende, and C. Pawlowicz, “Optical selection, manipulation, trapping, and activation of a microgear structure for applications in micro-optical-electromechanical systems,” Appl. Opt. 40, 930-937 (2001). [CrossRef]
  25. M. P. MacDonald, L. Paterson, W. Sibbett, K. Dholakia, and P. E. Bryant, “Trapping and manipulation of low-index particles in a two-dimensional interferometric optical trap,” Opt. Lett. 26, 863-865 (2001). [CrossRef]
  26. E. L. Florin, A. Pralle, J. K. H. Hörber, and E. H. K. Stelzer, “Photonic force microscope based on optical tweezers and two-photon excitation for biological applications,” J. Struct. Biol. 119, 202-211 (1997). [CrossRef] [PubMed]
  27. L. P. Ghislain and W. W. Webb, “Scanning-force microscope based on an optical trap,” Opt. Lett. 18, 1678-1680 (1993). [CrossRef] [PubMed]
  28. M. E. J. Friese, A. G. Truscott, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Three-dimensional imaging with optical tweezers,” Appl. Opt. 38, 6597-6603 (1999). [CrossRef]
  29. M. Seryab, P. Jakl, J. JeZek, A. Jonas, P. Zemtnek, and M. Liska, “The use of an optically trapped microprobe for scanning details of surface,” Proc. SPIE 5259, 166-169 (2003). [CrossRef]
  30. Y. Takaya, H. Shimizu, S. Takahashi, and T. Miyoshi, “Fundamental study on the new probe technique for the nano-CMM based on laser trapping and a mirau interferometer,” Measurement 25, 9-18 (1999). [CrossRef]
  31. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288-290 (1986). [CrossRef] [PubMed]
  32. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569-582 (1992). [CrossRef] [PubMed]
  33. W. H. Wright, G. J. Sonek, and M. W. Berns, “Parametric study of the forces on microspheres held by optical tweezers,” Appl. Opt. 33, 1735-1748 (1994). [CrossRef] [PubMed]
  34. Y. Takaya, K. Imai, S. Dejima, and T. Miyoshi, “Nano-position sensing using optically motion-controlled microprobe with PSD based on the laser trapping technique,” CIRP Annals 54, 467-470 (2005). [CrossRef]
  35. Y. Takaya, K. Imai, S. Dejima, and T. Miyoshi, “Dynamic properties measurement of vibrating microprobe for nano-position sensing using radiation pressure control,” Proc. SPIE 5930, 223-230 (2005).
  36. M. E. J. Friese, A. G. Truscott, H. R. Dunlop, and N. R. Heckenberg, “Determination of the force constant of a single-beam gradient trap by measurement of backscattered light,” Appl. Opt. 35, 7112-7116 (1996). [CrossRef] [PubMed]
  37. Z. Ding, G. Lai, T. Sakakibara, and S. Shinohara, “Determination of the spring constant of an optical trap by external sinusoidal excitation and lock-in detection,” J. Appl. Phys. 88, 737-741 (2000). [CrossRef]
  38. K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594-612(2004). [CrossRef]
  39. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media (Springer, 1983).
  40. R. Omori, T. Kobayashi, and A. Suzuki, “Observation of a single-beam gradient-force optical trap for dielectric particles in air, ” Opt. Lett. 22, 816-818 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited