OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 2 — Jan. 10, 2009
  • pp: 261–269

Coma measurement by use of an alternating phase-shifting mask mark with a specific phase width

Zicheng Qiu, Xiangzhao Wang, Qiongyan Yuan, and Fan Wang  »View Author Affiliations

Applied Optics, Vol. 48, Issue 2, pp. 261-269 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1273 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The correlation between the coma sensitivity of the alternating phase-shifting mask (Alt-PSM) mark and the mark’s structure is studied based on the Hopkins theory of partially coherent imaging and positive resist optical lithography (PROLITH) simulation. It is found that an optimized Alt-PSM mark with its phase width being two-thirds its pitch has a higher sensitivity to coma than Alt-PSM marks with the same pitch and the different phase widths. The pitch of the Alt-PSM mark is also optimized by PROLITH simulation, and the structure of p = 1.92 λ / NA and p w = 2 p / 3 proves to be with the highest sensitivity. The optimized Alt-PSM mark is used as a measurement mark to retrieve coma aberration from the projection optics in lithographic tools. In comparison with an ordinary Alt-PSM mark with its phase width being a half its pitch, the measurement accuracies of Z 7 and Z 14 apparently increase.

© 2009 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(110.3960) Imaging systems : Microlithography
(110.4980) Imaging systems : Partial coherence in imaging
(110.5220) Imaging systems : Photolithography
(120.3940) Instrumentation, measurement, and metrology : Metrology

ToC Category:
Imaging Systems

Original Manuscript: August 11, 2008
Revised Manuscript: October 20, 2008
Manuscript Accepted: November 19, 2008
Published: January 7, 2009

Zicheng Qiu, Xiangzhao Wang, Qiongyan Yuan, and Fan Wang, "Coma measurement by use of an alternating phase-shifting mask mark with a specific phase width," Appl. Opt. 48, 261-269 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Wang, X. Wang, M. Ma, D. Zhang, W. Shi, and J. Hu, “Aberration measurement of projection optics in lithographic tools by use of an alternating phase-shifting mask,” Appl. Opt. 45, 281-287 (2006). [CrossRef] [PubMed]
  2. M. Ma, X. Wang, F. Wang, W. Shi, and D. Zhang, “Coma aberration measurement by lateral image displacements at different defocus positions,” Proc. SPIE 6150, 615003 (2006). [CrossRef]
  3. E. Hendrickx, A. Colina, A. V. D. Hoff, J. Finders, and G. Vandenberghe, “Image placement error: closing the gap between overlay and imaging,” J. Microlithogr. Microfabr. Microsyst. 4, 033006 (2005). [CrossRef]
  4. T. Fujii, K. Suzuki, Y. Mizuno, and N. Kita, “Integrated projecting optics tester for inspection of immersion ArF scanner,” Proc. SPIE 6152, 615237 (2006). [CrossRef]
  5. T. Fujii, J. Kougo, Y. Mizuno, H. Ooki, and M. Hamatani, “Portable phase measuring interferometer using Shack-Hartmann method,” Proc. SPIE 5038, 726-732 (2003). [CrossRef]
  6. Y. Ohsaki, T. Mori, S. Koga, M. Ando, K. Yamamoto, T. Tezuka, and Y. Shiode, “A new on-machine measurement system to measure wavefront aberrations of projection optics with hyper-NA,” Proc. SPIE 6154, 615424 (2006). [CrossRef]
  7. M. van de Kerkhof, W. de Boeij, H. Kok, M. Silova, J. Baselmans, and M. Hemerik, “Full optical column characterization of DUV lithographic projection tools,” Proc. SPIE 5377, 1960-1970 (2004). [CrossRef]
  8. P. De Bisschop, “Evaluation of Litel's in situ interferometer (ISI) technique for measuring projection lens aberrations: an initial study,” Proc. SPIE 5040, 11-23 (2003). [CrossRef]
  9. P. Dirksen, J. Braat, A. J. E. M. Janssen, and C. Juffermans, “Aberration retrieval using the extended Nijboer-Zernike approach,” J. Microlithogr. Microfabr. Microsyst. 2, 61-68 (2003). [CrossRef]
  10. H. Nomura and T. Sato, “Techniques for measuring aberrations in lenses used in photolithography with printed patterns,” Appl. Opt. 38, 2800-2807 (1999). [CrossRef]
  11. H. van der Laan, M. Dierichs, H. van Greevenbroek, E. McCoo, F. Stoffels, R. Pongers, and R. Willekers, “Aerial image measurement methods for fast aberration setup and illumination pupil verification,” Proc. SPIE 4346, 394-407 (2001). [CrossRef]
  12. E. Hendrickx, G. Vandenberghea, and K. Ronsea, “Pattern displacement induced by lens aberrations,” Proc. SPIE 4889, 1155-1162 (2002). [CrossRef]
  13. C. A. Mack, “PROLITH: a comprehensive optical lithography model,” Proc. Soc. Photo-Opt. Instrum. Eng. 538, 207-220(1985).
  14. C. A. Mack, “Lithography simulation in semiconductor manufacturing,” Proc. SPIE 5645, 63-83 (2005). [CrossRef]
  15. C. A. Mack, “Thirty years of lithography simulation,” Proc. SPIE 5754, 1-12 (2005). [CrossRef]
  16. W. A. Kwok-Kit, Optical Imaging in Projection Microlithography (SPIE, 2005).
  17. H. Hopkins, “Canonical coordinates in geometrical and diffraction image theory,” Jpn. J. Appl. Phys. 4, 31-35(1965).
  18. H. Hopkins, “On the diffraction theory of optical images,” Proc. R. Soc. A 217(A), 408-432 (1953). [CrossRef]
  19. A. K. Wong, L. W. Liebmann, and A. F. Molless, “Alternating phase-shifting mask with reduced aberration sensitivity: lithography considerations,” Proc. SPIE 4346, 420-428(2001). [CrossRef]
  20. M. Ma, X. Wang, and F. Wang, “Aberration measurement of projection optics in lithographic tools based on two-beam interference theory,” Appl. Opt. 45, 8200-8208 (2006). [CrossRef] [PubMed]
  21. P. Graupner, R. Garreis, A. Gohnermeier, T. Heil, M. Lowisch, and D. Flagello, “Impact of wavefront errors on low k1processes at extreme high NA,” Proc. SPIE 5040, 119-130(2003). [CrossRef]
  22. Q. Yan, X. Wang, Z. Qiu, F. Wang, M. Ma, and L. He, “Coma measurement of projection optics in lithographic tools based on relative image displacements at multiple illumination settings,” Opt. Express 15, 15878-15885 (2007). [CrossRef]
  23. A. K. Wong, Resolution Enhancement Techniques in Optical Lithography (SPIE, 2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited