OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 2 — Jan. 10, 2009
  • pp: 408–413

Absorption and wavelength modulation spectroscopy of NO 2 using a tunable, external cavity continuous wave quantum cascade laser

Andreas Karpf and Gottipaty N. Rao  »View Author Affiliations


Applied Optics, Vol. 48, Issue 2, pp. 408-413 (2009)
http://dx.doi.org/10.1364/AO.48.000408


View Full Text Article

Enhanced HTML    Acrobat PDF (555 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The absorption spectra and wavelength modulation spectroscopy (WMS) of NO 2 using a tunable, external cavity CW quantum cascade laser operating at room temperature in the region of 1625 to 1645 cm 1 are reported. The external cavity quantum cascade laser enabled us to record continuous absorption spectra of low concentrations of NO 2 over a broad range ( 16 cm 1 ), demonstrating the potential for simultaneously recording the complex spectra of multiple species. This capability allows the identification of a particular species of interest with high sensitivity and selectivity. The measured spectra are in excellent agreement with the spectra from the high-resolution transmission molecular absorption database [ J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005)]. We also conduct WMS for the first time using an external cavity quantum cascade laser, a technique that enhances the sensitivity of detection. By employing WMS, we could detect low-intensity absorption lines, which are not visible in the simple absorption spectra, and demonstrate a minimum detection limit at the 100 ppb level with a short-path absorption cell. Details of the tunable, external cavity quantum cascade laser system and its performance are discussed.

© 2009 Optical Society of America

OCIS Codes
(000.2170) General : Equipment and techniques
(010.1120) Atmospheric and oceanic optics : Air pollution monitoring
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(280.3420) Remote sensing and sensors : Laser sensors
(300.1030) Spectroscopy : Absorption
(300.6340) Spectroscopy : Spectroscopy, infrared

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: September 16, 2008
Revised Manuscript: December 5, 2008
Manuscript Accepted: December 9, 2008
Published: January 9, 2009

Citation
Andreas Karpf and Gottipaty N. Rao, "Absorption and wavelength modulation spectroscopy of NO2 using a tunable, external cavity continuous wave quantum cascade laser," Appl. Opt. 48, 408-413 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-2-408


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. “National air quality, monitoring and emissions trends report,” EPA Report 450/2-78-052, United States Environmental Protection Agency, Washington DC, 1978.
  2. L. Gianfrani, G. Gagliardi, G. Pesce, and A. Sasso, “High-sensitivity detection of NO2 using a 740 nm semiconductor diode laser,” Appl. Phys. B 64, 487-491 (1997). [CrossRef]
  3. A. Schmol, A. Miklós, and P. Hess, “Detection of ammonia by photoacoustic spectroscopy with semiconductor lasers,” Appl. Opt. 41, 1815-1823 (2002). [CrossRef]
  4. D. B. Oh and A. C. Stanton, “Measurement of nitric oxide with an antimonide diode laser,” Appl. Opt. 36, 3294-3297 (1997). [CrossRef] [PubMed]
  5. J. Wang, M. Maiorov, D. S. Baer, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “In situ combustion measurements of CO with diode laser absorption near 2.3 μm,” Appl. Opt. 39, 5579-5589 (2000). [CrossRef]
  6. P. Werle, “Analytical applications of infrared semiconductor lasers in atmospheric trace gas monitoring,” J. Phys. IV 4, C4-9-C4-12 (1994). [CrossRef]
  7. M. Mürtz, B. Frech, P. Palm, R. Lotze, and W. Urban, “Tunable carbon monoxide overtone laser sideband system for precision spectroscopy from 2.6 to 4.1 μm,” Opt. Lett. 23, 58-60 (1998). [CrossRef]
  8. F. G. C. Bijnen, F. J. M. Harren, J. H. P. Hackenstein, and J. Reuss, “Intracavity CO laser photoacoustic trace gas detection: cyclic CH4, H2O and CO2 emission by cockroaches and scarab beetles,” Appl. Opt. 35, 5357-5368 (1996). [CrossRef] [PubMed]
  9. A. A. Kosterev, R. F. Curl, F. K. Tittel, M. Rochat, M. Beck, D. Hofstetter, and J. Faist, “Chemical sensing with pulsed QC-DFB lasers operating at 15.6 μm,” Appl. Phys. B 75, 351-357 (2002). [CrossRef]
  10. F. K. Tittel, Y. Bakhirkin, A. Kosterev, and G. Wysocki, “Recent advances in trace gas detection using quantum and interband cascade lasers,” Rev. Laser Eng. 34, 275-282 (2006).
  11. G. Wysocki, R. Curl, F. Tittel, R. Maulini, J. Billiard, and J. Faist, “Widely tunable mode-hop free external cavityquantum cascade laserfor high resolution spectroscopic applications,” Appl. Phys. B 81, 769-777 (2005). [CrossRef]
  12. R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36, 2522-2524 (1965). [CrossRef]
  13. A. N. Dharamsi, “A theory of modulation spectroscopy with applications of higher harmonic detection,” J. Phys. D 29, 540-549 (1996). [CrossRef]
  14. L. C. Philippe and R. K. Hanson, “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows,” Appl. Opt. 32, 6090-6103 (1993). [CrossRef] [PubMed]
  15. H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt. 45, 1052-1061 (2006). [CrossRef] [PubMed]
  16. L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005). [CrossRef]
  17. J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers--comparison of experiment and theory,” Appl. Phys. B 26, 203-210 (1981). [CrossRef]
  18. C. N. Mikhailenko, Yu. L. Babikov, and V. F. Golovko, “Information-calculating system spectroscopy of atmospheric gases. The structure and main functions,” Atmos. Oceanic Opt. 18, 685-695 (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited