OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 20 — Jul. 10, 2009
  • pp: 3894–3902

Abel inversion of deflectometric data: comparison of accuracy and noise propagation of existing techniques

Pankaj S. Kolhe and Ajay K. Agrawal  »View Author Affiliations


Applied Optics, Vol. 48, Issue 20, pp. 3894-3902 (2009)
http://dx.doi.org/10.1364/AO.48.003894


View Full Text Article

Enhanced HTML    Acrobat PDF (923 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Abel inverse integral to obtain local field distributions from path-integrated measurements in an axisymmetric medium is an ill-posed problem with the integrant diverging at the lower integration limit. Existing methods to evaluate this integral can be broadly categorized as numerical integration techniques, semianalytical techniques, and least-squares whole-curve-fit techniques. In this study, Simpson’s 1 / 3 rd rule (a numerical integration technique), one-point and two-point formulas (semianalytical techniques), and the Guass–Hermite product polynomial method (a least-squares whole-curve-fit technique) are compared for accuracy and error propagation in Abel inversion of deflectometric data. For data acquired at equally spaced radial intervals, the deconvolved field can be expressed as a linear combination (weighted sum) of measured data. This approach permits use of the uncertainty analysis principle to compute error propagation by the integration algorithm. Least-squares curve-fit techniques should be avoided because of poor inversion accuracy with large propagation of measurement error. The two-point formula is recommended to achieve high inversion accuracy with minimum error propagation.

© 2009 Optical Society of America

OCIS Codes
(000.2190) General : Experimental physics
(100.6950) Image processing : Tomographic image processing
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(280.1740) Remote sensing and sensors : Combustion diagnostics
(280.2490) Remote sensing and sensors : Flow diagnostics

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: April 6, 2009
Revised Manuscript: June 1, 2009
Manuscript Accepted: June 15, 2009
Published: July 1, 2009

Citation
Pankaj S. Kolhe and Ajay K. Agrawal, "Abel inversion of deflectometric data: comparison of accuracy and noise propagation of existing techniques," Appl. Opt. 48, 3894-3902 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-20-3894


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. H. Abel, “Auflosung einer mechanischen Aufgabe,” J. Reine Angew. Math. 1, 153-157 (1826). [CrossRef]
  2. R. N. Bracewell, “Strip integration in radio astronomy,” Aust. J. Phys. 9, 198-217 (1956). [CrossRef]
  3. U. Buck, “Inversion of molecular scattering data,” Rev. Mod. Phys. 46, 369-389 (1974). [CrossRef]
  4. C. J. Cremers and R. C. Birkebak, “Application of the Abel integral equation to spectrographic data,” Appl. Opt. 5, 1057-1064 (1966). [CrossRef] [PubMed]
  5. M. P. Freeman and S. Katz, “Determination of radial distribution of brightness in a cylindrical luminous medium with self-absorption,” J. Opt. Soc. Am. 50, 826-830 (1960). [CrossRef]
  6. P. Andanson, B. Cheminat, and A. M. Halbique, “Numerical solution of the Abel integral equation: application to plasma spectroscopy,” J. Phys. D Appl. Phys. 11, 209-215 (1978). [CrossRef]
  7. K. Bockasten, “Transformation of observed radiances into radial distribution of the emission of a plasma,” J. Opt. Soc. Am. 51, 943-947 (1961). [CrossRef]
  8. K. M. Green, M. C. Borras, P. P. Woskov, G. J. Flores III, K. Hadidi, and P. Thomas, “Electronic excitation temperature profiles in an air microwave plasma torch,” IEEE Trans. Plasma Sci. 29, 399-406 (2001). [CrossRef]
  9. V. Dribinski, A. Ossadtchi, V. A. Mandeleshtam, and H. Reisler, “Reconstruction of Abel-transformable images: the Gaussian basis-set expansion Abel transform method,” Rev. Sci. Instrum. 73, 2634-2642 (2002). [CrossRef]
  10. G. N. Minerbo and M. E. Levy, “Inversion of Abel's integral equation by means of orthogonal polynomials,” SIAM J. Numer. Anal. 6, 598-616 (1969). [CrossRef]
  11. M. Deutsch and I. Beniaminy, “Inversion of Abel's integral equation for experimental data,” J. Appl. Phys. 54, 137-143(1983). [CrossRef]
  12. M. Kalal and K. A. Nugent, “Abel inversion using fast Fourier transforms,” Appl. Opt. 27, 1956-1959 (1988). [CrossRef] [PubMed]
  13. W. J. Glantschnig and A. Holliday, “Mass fraction profiling based on x-ray tomography and its application to characterizing porous silica boules,” Appl. Opt. 26, 983-989 (1987). [CrossRef] [PubMed]
  14. K. Tatekura, “Determination of the index profile of optical fibers from transverse interferograms using Fourier theory,” Appl. Opt. 22, 460 (1983). [CrossRef] [PubMed]
  15. E. Ampem-Lassen, S. T. Huntington, N. M. Dragomir, K. A. Nugent, and A. Roberts, “Refractive index profiling of axially symmetric optical fibers: a new technique,” Opt. Express 13, 3277-3282 (2005). [CrossRef] [PubMed]
  16. D. C. Hammond, Jr., “Deconvolution technique for line-of-sight optical measurements in axisymmetric sprays,” Appl. Opt. 20, 493-499 (1981). [CrossRef] [PubMed]
  17. E. Keren, E. Bar-Ziv, I. Glatt, and O. Kafri, “Measurements of temperature distribution of flames by moire deflectometry,” Appl. Opt. 20, 4263-4266 (1981). [CrossRef] [PubMed]
  18. J. R. Camacho, F. N. Beg, and P. Lee1, “Comparison of sensitivities of Moire deflectometry and interferometry to measure electron densities in z-pinch plasmas,” J. Phys. D. 40, 2026-2032 (2007). [CrossRef]
  19. P. V. Farrell and D. L. Hofeldt, “Temperature measurement in gases using speckle photography,” Appl. Opt. 23, 1055-1059(1984). [CrossRef] [PubMed]
  20. P. S. Greenberg, R. B. Klimek, and D. R. Buchele, “Quantitative rainbow schlieren deflectometry,” Appl. Opt. 34, 3810-3822 (1995). [CrossRef] [PubMed]
  21. K. Al-Ammar, A. K. Agrawal, S. R. Gollahalli, and D. Griffin, “Concentration measurements in an axisymmetric helium jet using rainbow schlieren deflectometry,” Exp. Fluids 25, 89-95 (1998). [CrossRef]
  22. A. K. Agrawal, K. N. Alammar, and S. R. Gollahalli, “Application of rainbow schlieren deflectometry to measure temperature and oxygen concentration in a laminar jet diffusion flame,” Exp. Fluids 32, 689-691 (2002).
  23. K. S. Pasumarthi and A. K. Agrawal, “Schlieren measurements and analysis of concentration field in self-excited helium jets,” Phys. Fluids 15, 3683-3692 (2003). [CrossRef]
  24. B. S. Yildirim and A. K. Agrawal, “Full-field concentration measurements of self-excited oscillations in momentum-dominated helium jets,” Exp. Fluids 38, 161-173(2005). [CrossRef]
  25. T. Wong and A. K. Agrawal, “Quantitative measurements in an unsteady flame using high-speed rainbow schlieren deflectometry,” Meas. Sci. Technol. 17, 1503-1510 (2006). [CrossRef]
  26. R. Gorenflo and Y. Kovetz, “Solution of an Abel-type integral equation in the presence of noise by quadratic programming,” Numer. Math. 8, 392-406 (1966). [CrossRef]
  27. R. Gorenflo and S. Vessella, “Abel integral equations: analysis and applications,” in Lecture Notes in Mathematics, A. Dold, B. Eckmann, and F. Takens, eds. (Springer-Verlag, 1980).
  28. K. E. Atkinson, “The numerical solution of an Abel integral equation by a product trapezoidal method,” SIAM J. Numer. Anal. 11, 97-101 (1974). [CrossRef]
  29. S. Guerona and M. Deutsch, “A fast Abel inversion algorithm,” J. Appl. Phys. 75, 4313-4318 (1994). [CrossRef]
  30. C. J. Dasch, “One-dimensional tomography: a comparison of Abel, onion-peeling, and filtered backprojection methods,” Appl. Opt. 31, 1146-1152 (1992). [CrossRef] [PubMed]
  31. L. A. Vasil'ev, Schlieren Methods (Israel Program for Scientific Translations, 1971).
  32. O. H. Nestor and H. N. Olson, “Numerical methods for reducing line and surface probe data,” SIAM Rev. 2, 200-207(1960). [CrossRef]
  33. W. Frie, “Zur auswertung der Abelschen integralgleichung,” Ann. Phys. 465, 332-339 (1963). [CrossRef]
  34. R. Rubinstein and P. S. Greenberg, “Rapid inversion of angular deflection data for certain axisymmetric refractive index distributions,” Appl. Opt. 33, 1141-1144 (1994). [CrossRef] [PubMed]
  35. A. T. Ramsey and M. Diesso, “Abel inversions: error propagation and inversion reliability,” Rev. Sci. Instrum. 70, 380-383 (1999). [CrossRef]
  36. L. M. Smith, “Nonstationary noise effects in the Abel inversion,” IEEE Trans. Inf. Theory 34, 158-161 (1988). [CrossRef]
  37. R. K. Paul, J. T. Andrews, K. Bose, and P. K. Barhai, “Reconstruction errors in Abel inversion,” Plasma Devices Oper. 13, 281-290 (2005). [CrossRef]
  38. A. K. Shenoy, A. K. Agrawal, and S. R. Gollahalli, “Quantitative evaluation of flow computations by rainbow schlieren deflectometry,” AIAA J. 36, 1953-1960 (1998). [CrossRef]
  39. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran: The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, 1992).
  40. H. W. Coleman and W. G. Steele, Jr., Experimentation and Uncertainty Analysis for Engineers, 2nd ed. (Wiley, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited