OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 20 — Jul. 10, 2009
  • pp: 3938–3942

Frequency characteristics of an inherently stable Nd:YAG laser operated at liquid helium temperature

Matthias Scholz, Evgeny Kovalchuk, and Achim Peters  »View Author Affiliations


Applied Optics, Vol. 48, Issue 20, pp. 3938-3942 (2009)
http://dx.doi.org/10.1364/AO.48.003938


View Full Text Article

Enhanced HTML    Acrobat PDF (484 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on frequency measurements of a free-running Nd:YAG laser operating at temperatures down to 6.5 K using a femtosecond laser frequency comb. Due to lower thermal expansion and thermo-optic effects as well as reduced electron–phonon interactions in Nd:YAG at cryogenic temperatures, a laser frequency stability on the order of 10 11 at τ 30 s has been achieved. Within a one-week measurement period, absolute frequency deviations were lower than 1.85 MHz . This is up to a 100-fold improvement of frequency stability compared to any existing free-running solid-state laser.

© 2009 Optical Society of America

OCIS Codes
(120.3940) Instrumentation, measurement, and metrology : Metrology
(140.3530) Lasers and laser optics : Lasers, neodymium

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: May 12, 2009
Manuscript Accepted: June 17, 2009
Published: July 2, 2009

Citation
Matthias Scholz, Evgeny Kovalchuk, and Achim Peters, "Frequency characteristics of an inherently stable Nd:YAG laser operated at liquid helium temperature," Appl. Opt. 48, 3938-3942 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-20-3938


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. V. Pound, “Electronic frequency stabilization of microwave oscillators,” Rev. Sci. Instrum. 17, 490-505 (1946). [CrossRef] [PubMed]
  2. R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97-105 (1983). [CrossRef]
  3. G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15-17 (1980). [CrossRef] [PubMed]
  4. T. J. Kane and R. L. Byer, “Monolithic, unidirectional, single-mode Nd:YAG ring laser,” Opt. Lett. 10, 65-67 (1985). [CrossRef] [PubMed]
  5. T. Kushida, “Linewidth and thermal shifts of spectral lines in neodymium-doped yttrium aluminum garnet and calcium fluorophosphates,” Phys. Rev. 185, 500-508(1969). [CrossRef]
  6. V. A. Sychugov and G. P. Shipulo, “Thermal investigation on Nd 3+ doped yttrium aluminum garnet,” Sov. Phys. Solid State 10, 2224-2225 (1969).
  7. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2 and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005). [CrossRef]
  8. D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 587-599 (2005). [CrossRef]
  9. A. A. Kaminskii, Laser Crystals (Springer-Verlag, 1981).
  10. H. Müller, S. Herrmann, T. Schuldt, M. Scholz, E. Kovalchuk, and A. Peters, “Offset compensation by use of amplitude-modulated sidebands in optical frequency standards,” Opt. Lett. 28, 2186-2188 (2003). [CrossRef] [PubMed]
  11. E. V. Kovalchuk, T. Schuldt, and A. Peters, “Combination of a continuous-wave optical parametric oscillator and a femtosecond frequency comb for optical frequency metrology,” Opt. Lett. 30, 3141-3143 (2005) [CrossRef] [PubMed]
  12. R. H. Pantell and H. E. Puthoff, Fundamentals of Quantum Electronics (Wiley, 1969).
  13. G. F. Imbusch, W. M. Yen, A. L. Schawlow, D. E. McCumber, and M. D. Sturge, “Temperature dependence of the width and position of the 2E-->4A2 fluorescence lines of Cr3+ and V2+ in MgO,” Phys. Rev. 133, A1029-A1034 (1964). [CrossRef]
  14. I. S. Andriesh, V. Y. Gamurar', D. N. Vylegzhanin, A. A. Kaminskii, S. I. Klokishner, and Y. E. Perlin, “Electron-phonon interaction in Y3Al5O12-Nd3+,” Sov. Phys. Solid State 14, 2550 (1973).
  15. R. Wynne, J. L. Daneu, T. Y. Fan, and T. Yee, “Thermal coefficients of the expansion and refractive index in YAG,” Appl. Opt. 38, 3282-3284 (1999). [CrossRef]
  16. M. Heurs, V. M. Quetschke, B. Willke, and K. Danzmann, I. Freitag, “Simultaneously suppressing frequency and intensity noise in a Nd:YAG nonplanar ring oscillator by means of the current-lock technique,” Opt. Lett. 29, 2148-2150 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited