OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 20 — Jul. 10, 2009
  • pp: 3967–3978

Approach to nonparametric cooperative multiband segmentation with adaptive threshold

Imane Sebari and Dong-Chen He  »View Author Affiliations


Applied Optics, Vol. 48, Issue 20, pp. 3967-3978 (2009)
http://dx.doi.org/10.1364/AO.48.003967


View Full Text Article

Enhanced HTML    Acrobat PDF (1572 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a new nonparametric cooperative approach to multiband image segmentation. It is based on cooperation between region-growing segmentation and edge segmentation. This approach requires no input data other than the images to be processed. It uses a spectral homogeneity criterion whose threshold is determined automatically. The threshold is adaptive and varies depending on the objects to be segmented. Applying this new approach to very high resolution satellite imagery has yielded satisfactory results. The approach demonstrated its performance on images of varied complexity and was able to detect objects of great spatial and spectral heterogeneity.

© 2009 Optical Society of America

OCIS Codes
(100.0100) Image processing : Image processing
(280.4991) Remote sensing and sensors : Passive remote sensing

ToC Category:
Image Processing

History
Original Manuscript: January 6, 2009
Revised Manuscript: June 1, 2009
Manuscript Accepted: June 3, 2009
Published: July 6, 2009

Citation
Imane Sebari and Dong-Chen He, "Approach to nonparametric cooperative multiband segmentation with adaptive threshold," Appl. Opt. 48, 3967-3978 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-20-3967


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. R. Pal and S. K. Pal, “A review on image segmentation techniques,” Pattern Recogn. 26, 1277-1294 (1993). [CrossRef]
  2. R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice Hall, 2002).
  3. M. Herold, M. E. Gardner, and D. A. Roberts, “Spectral resolution requirements for mapping urban areas,” IEEE Trans. Geosci. Remote Sens. 41, 1907-1919 (2003). [CrossRef]
  4. C. D. Kermad and K. Chehdi, “Segmentation d'images : recherche d'une mise en oeuvre automatique par coopération de méthodes,” Trait. Signal 15, 331-336 (1998).
  5. W. Skarbek and A. Koschan, “Colour Image Segmentation: A Survey,” technical report, Technical University of Berlin, 1994.
  6. Y.-J. Zhang, “An overview of image and video segmentation in the last 40 years,” in Advances in Image and Video Segmentation, Y.-J.Zhang, ed. (IRM Press, 2006), pp. 1-15. [CrossRef]
  7. K. N. Plataniotis and A. N. Venetsanopoulos, Color Image Processing and Applications (Springer-Verlag, 2000).
  8. H. D. Cheng, X. H. Jiang, Y. Sun, and J. Wang, “Color image segmentation: advances and prospects,” Pattern Recogn. 34, 2259-2281 (2001). [CrossRef]
  9. L. Lucchese and S. K. Mitra, “Color image segmentation: a state-of-the-art survey,” in Proceedings of the Indian National Science Academy (INSA-A) (New Delhi, India, 2001), pp. 207-221.
  10. F. Bellet, M. Salotti, and C. Garbay, “Une approche opportuniste et coopérative pour la vision de bas niveau,” Trait. Signal 12, 479-494 (1995).
  11. J. Fan, D. K. Y. Yau, A. K. Elmagarmid, and W. G. Aref, “Automatic image segmentation by integrating color-edge extraction and seeded region growing,” IEEE Trans. Image Process. 10, 1454-1466 (2001). [CrossRef]
  12. R. Fjørtoft, “Segmentation d'images radar par détection de contours,” Ph.D. thesis (Institut National Polytechnique de Toulouse, 1999).
  13. X. Cufi, X. Muñoz, J. Freixenet, and J. Marti, “A review on image segmentation techniques integrating region and boundary information,” in Advances in Imaging and Electron Physics, P.W.Hawkes, ed. (Academic Press, 2001), pp. 1-50.
  14. X. Muñoz, J. Freixenet, X. Cufi, and J. Martì, “Strategies for image segmentation combining region and boundary information,” Pattern Recogn. Lett. 24, 375-392 (2003). [CrossRef]
  15. I. Sebari and D-C. He, “Les approches de segmentation d'image par coopération régions-contours,” Télédétection 7, 499-506 (2007).
  16. M. Mueller, K. Segl, and H. Kaufmann, “Edge- and region-based segmentation technique for the extraction of large, man-made objects in high-resolution satellite imagery,” Pattern Recogn. 37, 1619-1628 (2004). [CrossRef]
  17. X. Muñoz, X. Cufí, J. Freixenet, and J. Martí, “A New approach to segmentation based on fusing circumscribed contours, region growing and clustering,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2000), pp. 800-803.
  18. C. Chu and J. Aggarwal, “The integration of image segmentation maps using region and edge information,” IEEE Trans. Pattern Anal. Mach. Intell. 15, 1241-1252 (1993). [CrossRef]
  19. D. Zugaj and V. Lattuati, “A new approach of color images segmentation based on fusing region and edge segmentations outputs,” Pattern Recogn. 31, 105-113 (1998). [CrossRef]
  20. J. M. Salotti, “Gestion des informations dans les premières étapes de la vision par ordinateur,” Ph.D. thesis (Institut National Polytechnique de Grenoble, 1994).
  21. S. A. Barker and P. J. W. Rayner, “Unsupervised image segmentation using Markov random field models,” Pattern Recogn. 33, 587-602 (2000). [CrossRef]
  22. C.-T. Li, “Multiresolution image segmentation integrating Gibbs sampler and region merging algorithm,” Signal Process. 83, 67-78 (2003). [CrossRef]
  23. R. Bajcsy, S. W. Lee, and A. Leonardis, “Detection of diffuse and specular interface reflections and inter-reflections by color image segmentation,” Int. J. Comput. Vis. 17, 241-272(1996). [CrossRef]
  24. A. Moghaddamzadeh and N. Bourbakis, “A fuzzy region growing approach for segmentation of color images,” Pattern Recogn. 30, 867-881 (1997). [CrossRef]
  25. P. Bertolino, “Contribution des pyramides irrégulières en segmentation d'images multirésolution,” Ph.D. thesis (Institut National Polytechnique de Grenoble, 1995).
  26. A. M. Nazif and M. D. Levine, “Low level image segmentation: an expert system,” IEEE Trans. Pattern Anal. Mach. Intell. PAMI-6, 555-577 (1984). [CrossRef]
  27. R. Caloz and A. Pointet, “Analyse comparative de la classification contextuelle et du maximum de vraisemblance: synthèse et cas d'étude,” Télédétection 3, 311-322(2003).
  28. R. Caloz and C. Collet, Précis de Télédétection--Vol. 3: Traitements Numériques d'Images de Télédétection (Université du Québec/AUF, 2001).
  29. M. Nagao and T. Matsuyama, A Structural Analysis of Complex Aerial Photographs (Plenum, 1980).
  30. G. Zack, W. Rogers, and S. Latt, “Automatic measurement of sister chromatid exchange frequency,” J. Histochem. Cytochem. 25, 741-753 (1977). [CrossRef] [PubMed]
  31. M. Nagao and T. Matsuyama, “Edge preserving smoothing,” Comput. Graph. Image Process. 9, 394-407 (1979). [CrossRef]
  32. D.-C. He, L. Wang, and M. Amani, “A new technique for multi-resolution image fusion,” in Proceedings of IGARSS-International Geoscience and Remote Sensing Symposium (IEEE, 2004), pp. 19-26.
  33. A. P. Carleer, O. Debeir, and E. Wolff, “Assessment of very high spatial resolution satellite image segmentations,” Photogramm. Eng. Remote Sensing 71, 1285-1294 (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited