OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 20 — Jul. 10, 2009
  • pp: 4018–4030

Wavefront reconstruction over a circular aperture using gradient data extrapolated via the mirror equations

Peter J. Hampton, Pan Agathoklis, and Colin Bradley  »View Author Affiliations


Applied Optics, Vol. 48, Issue 20, pp. 4018-4030 (2009)
http://dx.doi.org/10.1364/AO.48.004018


View Full Text Article

Enhanced HTML    Acrobat PDF (1683 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Methods for extrapolating gradient data outside a circular aperture from measurements obtained within a circular aperture are presented. The proposed methods are required to be computationally efficient and to avoid the excitation of additional waffle modes in Fried alignment. It is shown that, using an octagon as an intermediate step from the circle to the square in the extrapolation process, the computations or residual reconstruction error can be reduced. The resulting computational cost is as low as O ( N 1 / 2 ) , where N is the number of measurement points. The performances of the extrapolation methods are studied in connection with a recently developed O ( N ) wavefront reconstruction algorithm based on wavelet filter banks [IEEE J. Sel. Top. Signal Process. 2, 781 (2008)] Experiments indicate that, as expected, there is a significant reconstruction error if no extrapolation is used. Further, the proposed extrapolation techniques lead to a reconstruction with data that are marginally different from a pupil masked reconstruction using data from a square aperture.

© 2009 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(350.5030) Other areas of optics : Phase
(070.7145) Fourier optics and signal processing : Ultrafast processing
(110.7410) Imaging systems : Wavelets
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: March 4, 2009
Revised Manuscript: June 16, 2009
Manuscript Accepted: June 18, 2009
Published: July 8, 2009

Citation
Peter J. Hampton, Pan Agathoklis, and Colin Bradley, "Wavefront reconstruction over a circular aperture using gradient data extrapolated via the mirror equations," Appl. Opt. 48, 4018-4030 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-20-4018


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. J. Widiker, S. R. Harris, and B. D. Duncan, “High-speed Shack-Hartmann wavefront sensor design with commercial off-the-shelf optics,” Appl. Opt. 45, 383-395 (2006). [CrossRef] [PubMed]
  2. R. Ragazzoni, “Pupil plane wavefront sensing with an oscillating prism,” J. Mod. Opt. 43, 289-293 (1996). [CrossRef]
  3. C. Roddier and F. Roddier, “Wave-front reconstruction from defocused images and the testing of ground-based optical telescopes,” J. Opt. Soc. Am. A 10, 2277-2287 (1993). [CrossRef]
  4. D. L. Fried, “Least-square fitting a wave-front distortion estimate to an array of phase-difference measurements,” J. Opt. Soc. Am. 67, 370-375 (1977). [CrossRef]
  5. R. Hudgin, “Wave-front reconstruction for compensated imaging,” J. Opt. Soc. Am. 67, 375-378 (1977). [CrossRef]
  6. J. Herrmann, “Least-squares wavefront errors of minimum norm,” J. Opt. Soc. Am. 70, 28-35 (1980). [CrossRef]
  7. K. Freischlad and C. Koliopoulos, “Modal estimation of a wave-front from difference measurements using the discrete Fourier transform,” J. Opt. Soc. Am. A 3, 1852-1861 (1986). [CrossRef]
  8. R. T. Frankot and R. Chellappa, “A method for enforcing integrability in shape from shading,” IEEE Trans. Pattern Anal. Mach. Intell. 10, 439-451 (1988). [CrossRef]
  9. L. A. Poyneer, D. T. Gavel, and J. M. Brase, “Fast wavefront reconstruction in large adaptive optics systems with the Fourier tranform,” J. Opt. Soc. Am. A 19, 2100-2111 (2002). [CrossRef]
  10. P. Kovesi, “Shapelets correlated with surface normals produce surfaces,” in Proceedings of the Tenth IEEE International Conference on Computer Vision (IEEE, 2005), pp. 994-1001.
  11. L. A. Poyneer, B. A. Macintosh, and J.-P. Véran, “Fourier-transform wavefront control with adaptive prediction of the atmosphere,” J. Opt. Soc. Am. A 24, 2645-2660 (2007). [CrossRef]
  12. A. Talmi and E. N. Ribak, “Wavefront reconstruction from its gradients,” J. Opt. Soc. Am. A 23, 288-297 (2006). [CrossRef]
  13. B. L. Ellerbroek, “Efficient computation of minimum-variance wave-front reconstructors with sparse matrix techniques,” J. Opt. Soc. Am. A 19, 1803-1816 (2002). [CrossRef]
  14. L. Gilles, B. Ellerbroek, and C. Vogel, “Multigrid preconditioned conjugate-gradient method for large-scale wave-front reconstruction,” J. Opt. Soc. Am. A 19, 1817-1822 (2002). [CrossRef]
  15. C. R. Vogel and Q. Yang, “Multigrid algorithm for least-squares wavefront reconstruction,” Appl. Opt. 45, 705-715(2006). [CrossRef] [PubMed]
  16. P. J. Hampton, P. Agathoklis, and C. Bradley, “A new wave-front reconstruction method for adaptive optics systems using wavelets,” IEEE J. Sel. Top. Signal Process. 2, 781-792(2008). [CrossRef]
  17. D. T. Gavel, “Suppressing anomalous localized waffle behavior in least-squares wavefront reconstructors,” Proc. SPIE 4839, 972-980 (2003). [CrossRef]
  18. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207-211 (1976). [CrossRef]
  19. F. Martin, R. Conan, A. Tokovinin, A. Ziad, H. Trinquet, J. Borgnino, A. Agabi, and M. Sarazin, “Optical parameters relevant for high angular resolution at Paranal from GSM instrument and surface layer contribution,” Astron. Astrophys. Suppl. Ser. 144, 39-44 (2000). [CrossRef]
  20. T. Nakajima, “Signal-to-noise ratio of the bispectral analysis of speckle interferometry,” J. Opt. Soc. Am. A 5, 1477-1491(1988). [CrossRef]
  21. S. A. Cornelissen, P. A. Bierden, and T. G. Bifano, “Development of a 4096 element deformable mirror for high contrast astronomical imaging,” Proc. SPIE 6306, 630606(2006). [CrossRef]
  22. P. J. Hampton, R. Conan, O. Keskin, P. Agathoklis, and C. Bradley, “Self-characterization of linear and nonlinear adaptive optics systems,” Appl. Opt. 47, 126-134 (2008). [CrossRef] [PubMed]
  23. B. P. Wallace, P. J. Hampton, C. H. Bradley, and R. Conan, “Evaluation of a MEMS deformable mirror for an adaptive optics testbench,” Opt. Express 14, 10132-10138 (2006). [CrossRef] [PubMed]
  24. D. R. Andersen, M. Fischer, R. Conan, M. Fletcher, and J.-P. Veran, “VOLT: the Victoria Open Loop Testbed,” Proc. SPIE 7015, 70150H (2008). [CrossRef]
  25. A. Tokovinin and E. Viard, “Limiting precision of tomographic phase reconstruction,” J. Opt. Soc. Am. A 18, 873-882 (2001). [CrossRef]
  26. D. Gavel, “Tomography for multiconjugate adaptive optics systems using laser guide stars,” Proc. SPIE 5490, 1356-1373 (2004). [CrossRef]
  27. L. A. Poyneer and J.-P. Véran, “Optimal modal Fourier transform wave-front control,” J. Opt. Soc. Am. A 22, 1515-1526(2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited