OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 21 — Jul. 20, 2009
  • pp: 4068–4076

Logarithmic conversion of absorption detection in wavelength modulation spectroscopy with a current-modulated diode laser

Yuntao Wang, Haiwen Cai, Jianxin Geng, and Zujie Fang  »View Author Affiliations

Applied Optics, Vol. 48, Issue 21, pp. 4068-4076 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (842 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Logarithmic-conversion data processing used in wavelength modulation spectroscopy (WMS) with a current-modulated diode laser as its source is analyzed and compared with second-to-first ratio de tection. Analytic Fourier coefficients of logarithmic-converted residual amplitude modulation (RAM) of a light source are given. An experimental setup for methane absorption detection at 1650 nm is described. It is shown theoretically and experimentally that logarithmic-converted WMS cannot only eliminate the fluctuation of received light power, but also improve the signal-to-noise ratio significantly.

© 2009 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(300.1030) Spectroscopy : Absorption
(300.6260) Spectroscopy : Spectroscopy, diode lasers
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(300.6320) Spectroscopy : Spectroscopy, high-resolution
(300.6380) Spectroscopy : Spectroscopy, modulation

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 22, 2009
Revised Manuscript: June 2, 2009
Manuscript Accepted: June 19, 2009
Published: July 10, 2009

Yuntao Wang, Haiwen Cai, Jianxin Geng, and Zujie Fang, "Logarithmic conversion of absorption detection in wavelength modulation spectroscopy with a current-modulated diode laser," Appl. Opt. 48, 4068-4076 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers--comparison of experiment and theory,” Appl. Phys. B 26, 203-210 (1981). [CrossRef]
  2. K. Chan, H. Ito, and H. Inaba, “10 km-long fibre-optic remote sensing of CH4 gas by near infrared absorption,” Appl. Phys. B 38, 11-15 (1985). [CrossRef]
  3. P. Kluczynski and O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt. 38, 5803-5815 (1999). [CrossRef]
  4. K. Uehara, “Dependence of harmonic signals on sample-gas parameters in wavelength-modulation spectroscopy for precise absorption measurements,” Appl. Phys. B 67517-523 (1998). [CrossRef]
  5. E. De Tommasi, G. Casa, and L. Gianfrani, “An intensity-stabilized diode-laser spectrometer for sensitive detection of NH3,” IEEE Trans. Instrum. Meas. 56, 309-312 (2007). [CrossRef]
  6. T. Iseki, “Calculation of the ratio between the second and first harmonic signals in wavelength-modulation spectroscopy for absorption measurement,” Opt. Rev. 10, 24-30 (2003). [CrossRef]
  7. A. V. Zybin, V. V. Liger, and Yu. A. Kuritsyn, “Dynamic range improvement and background correction in diode laser atomic absorption spectrometry,” Spectrochim. Acta B 54, 613-619(1999). [CrossRef]
  8. M. G. Allen, K. L. Carleton, S. J. Davis, W. J. Kessler, C. E. Otis, D. A. Palombo, and D. M. Sonnenfroh, “Ultra-sensitive dual-beam absorption and gain spectroscopy: applications for near-infrared and visible diode laser sensors,” Appl. Opt. 34, 3240-3249 (1995). [CrossRef] [PubMed]
  9. L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533-572 (2009). [CrossRef]
  10. J. Goldberg, H. F. Taylor, and J. Weller, “Time-dependent thermal effects in current modulated semiconductor lasers,” Electron. Lett. 17, 497-499 (1981). [CrossRef]
  11. R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36, 2522-2524(1965). [CrossRef]
  12. Y. Wang, H. Cai, J. Geng, Z. Pan, D. Chen, and Z. Fang, “Behaviors of harmonic signals in wavelength-modulated spectroscopy under high absorption strength,” Chinese Opt. Lett. 5, 552-555 (2007).
  13. K. Uehara and H. Tai, “Remote detection of methane with a 1.66 μm diode laser,” Appl. Opt. 31, 809-815 (1992). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited