OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 21 — Jul. 20, 2009
  • pp: 4077–4089

Amplitude variations on a MEMS-based extreme adaptive optics coronagraph testbed

Sandrine Thomas, Julia W. Evans, Donald Gavel, Daren Dillon, and Bruce Macintosh  »View Author Affiliations


Applied Optics, Vol. 48, Issue 21, pp. 4077-4089 (2009)
http://dx.doi.org/10.1364/AO.48.004077


View Full Text Article

Enhanced HTML    Acrobat PDF (1543 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

High-contrast imaging techniques such as coronagraphy are expected to play an important role in the imaging of extrasolar planets. Instruments like the Gemini Planet Imager (GPI) or the Spectro- Polar-Imetric High-Contrast Exoplanet Research (SPHERE) require high-dynamic range, achieved using coronagraphs to block light coming from the parent star. An extremely good adaptive optics (AO) system is required to reduce dynamic atmospheric wavefront errors to 50 100 nm   rms . Systematic wavefront errors must also be controlled at the nanometer-equivalent level to remove persistent speckle artifacts. While precision AO systems can control wavefront phase errors at this level, systematic amplitude or intensity errors can also produce speckle artifacts and are uncontrolled by traditional AO phase conjugation. On the Laboratory for Adaptive Optics (LAO) extreme AO testbed, we observed a discrepancy between the coronagraphic image profile and the profile predicted by simple simulations using the measured optical phase, which could potentially be explained by amplitude variations. Measurements showed up to 7 % rms intensity changes across the microelectrical mechanical (MEM) plane of the system. We identified potential sources of amplitude variation and compared them to a Fresnel model of the system. One potential concern was the surface structure of the MEM system’s (MEMS) deformable mirror, but analysis shows that it induces at most 2 %   rms variation. The bulk of the observed intensity variation is due to nonuniform illumination of the system by the input single-mode fiber and phase errors mixing into amplitude at the nonpupil-plane due to the Talbot effect, coupled with residual astigmatism in the pupil imager.

© 2009 Optical Society of America

OCIS Codes
(230.3990) Optical devices : Micro-optical devices
(010.1285) Atmospheric and oceanic optics : Atmospheric correction
(070.7345) Fourier optics and signal processing : Wave propagation
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Fourier Optics and Signal Processing

History
Original Manuscript: February 18, 2009
Revised Manuscript: May 28, 2009
Manuscript Accepted: June 5, 2009
Published: July 10, 2009

Citation
Sandrine Thomas, Julia W. Evans, Donald Gavel, Daren Dillon, and Bruce Macintosh, "Amplitude variations on a MEMS-based extreme adaptive optics coronagraph testbed," Appl. Opt. 48, 4077-4089 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-21-4077


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Macintosh, J. Graham, D. Palmer, R. Doyon, D. Gavel, J. Larkin, B. Oppenheimer, L. Saddlemyer, J. K. Wallace, B. Bauman, J. Evans, D. Erikson, K. Morzinski, D. Phillion, L. Poyneer, A. Sivaramakrishnan, R. Soummer, S. Thibault, and J.-P. Veran, “The Gemini Planet Imager,” Proc. SPIE 6272, 62720L (2006). [CrossRef]
  2. T. Fusco, G. Rousset, J.-F. Sauvage, C. Petit, J.-L. Beuzit, K. Dohlen, D. Mouillet, J. Charton, M. Nicolle, M. KasperP. Baudoz, and P. Puget, “High-order adaptive optics requirements for direct detection of extrasolar planets: application to the SPHERE instrument,” Opt. Express 14, 7515-7534 (2006). [CrossRef] [PubMed]
  3. R. Belikov, A. Give'on, J. T. Trauger, M. Carr, N. J. Kasdin, R. J. Vanderbei, F. Shi, K. Balasubramanian, and A. Kuhnert, “Toward 1010 contrast for terrestrial exoplanet detection: demonstration of wavefront correction in a shaped-pupil coronagraph,” Proc. SPIE 6265, 626518 (2006). [CrossRef]
  4. J. T. Trauger, C. Burrows, B. Gordon, J. J. Green, A. E. Lowman, D. Moody, A. F. Niessner, F. Shi, and D. Wilson, “Coronagraph contrast demonstrations with the high-contrast imaging testbed,” Proc. SPIE 5487, 1330-1336 (2004). [CrossRef]
  5. S. A. Severson, B. Bauman, D. Dillon, J. Evans, D. Gavel, B. Macintosh, K. Morzinski, D. Palmer, and L. Poyneer, “The extreme adaptive optics testbed at UCSC: current results and coronagraphic upgrade,” Proc. SPIE 6272, 62722J (2006). [CrossRef]
  6. L. A. Poyneer and B. Macintosh, “Spatially filtered wave-front sensor for high-order adaptive optics,” J. Opt. Soc. Am. A 21, 810-819 (2004). [CrossRef]
  7. J. W. Evans, G. Sommargren, B. A. Macintosh, S. Severson, and D. Dillon, “Effect of wavefront error on 10−7 contrast measurements,” Opt. Lett. 31, 565-567 (2006). [CrossRef] [PubMed]
  8. J. W. Evans, B. Macintosh, L. Poyneer, K. Morzinski, S. Severson, D. Dillon, D. Gavel, and L. Reza, “Demonstrating sub-nm closed loop MEMS flattening,” Opt. Express 14, 5558-5570(2006). [CrossRef] [PubMed]
  9. T. Bifano, P. Bierden, and J. Perreault, “Micromachined deformable mirrors for dynamic wavefront control,” Proc. SPIE 5553, 116 (2004).
  10. J. W. Evans, S. Thomas, D. Dillon, D. Gavel, D. Phillion, and B. Macintosh, “Amplitude variations on the ExAO testbed,” Proc. SPIE 6693, 669312 (2007). [CrossRef]
  11. C. Marois, B. Macintosh, R. Soummer, L. Poyneer, and B. Bauman, “An end-to-end polychromatic Fresnel propagation model of GPI,” Proc. SPIE 7015, 70151T (2008). [CrossRef]
  12. A. E. Lowman, J. T. Trauger, B. Gordon, J. J. Green, D. Moody, A. F. Niessner, and F. Shi, “High-contrast imaging testbed for the Terrestrial Planet Finder coronagraph,” Proc. SPIE 5487, 1246-1254 (2004). [CrossRef]
  13. J. Trauger and W. Traub, “A laboratory demonstration of the capability to image an Earth-like extrasolar planet,” Nature 446, 771-773 (2007). [CrossRef] [PubMed]
  14. J. W. Evans, K. Morzinski, L. Reza, S. Severson, L. Poyneer, B. A. Macintosh, D. Dillon, G. Sommargren, D. Palmer, D. Gavel, and S. Olivier, “Extreme adaptive optics testbed: high contrast measurements with a MEMS deformable mirror,” Proc. SPIE 5905, 303-310 (2005).
  15. C. Aime, R. Soummer, and A. Ferrari, “Interferometric apodization of rectangular apertures. Application to stellar coronagraphy,” Astron. Astrophys. 379, 697-707 (2001). [CrossRef]
  16. G. E. Sommargren, D. W. Phillion, M. A. Johnson, N. Q. Nguyen, A. Barty, F. J. Snell, D. R. Dillon, and L. S. Bradsher, “100-picometer interferometry for EUVL,” Proc. SPIE 4688, 316-328 (2002). [CrossRef]
  17. C. Marois, D. W. Phillion, and B. Macintosh, “Exoplanet detection with simultaneous spectral differential imaging: effects of out-of-pupil-plane optical aberrations,” Proc. SPIE 6269, 62693M (2006). [CrossRef]
  18. S. Thomas, J. W. Evans, D. Phillion, D. Gavel, D. Dillon, and B. Macintosh, “Amplitude variations on the ExAO testbed: part II,” Proc. SPIE 6888, 68880J (2008). [CrossRef]
  19. J. Graham, Berkeley Astronomy Department, University of California, 601 Campbell Hall, University of California at Berkeley, Berkeley, California 94720 (private communication, 2008).
  20. L. A. Poyneer, D. Dillon, S. Thomas, and B. A. Macintosh, “Laboratory demonstration of accurate and efficient nanometer-level wavefront control for extreme adaptive optics,” Appl. Opt. 47, 1317-1326 (2008). [CrossRef] [PubMed]
  21. N. J. Kasdin, R. J. Vanderbei, D. N. Spergel, and M. G. Littman, “Extrasolar planet finding via optimal apodized-pupil and shaped-pupil coronagraphs,” Astrophys. J. 582, 1147-1161(2003). [CrossRef]
  22. H. F. Talbot, “Facts relating to optical science,” Philos. Mag. 9, 401 (1836).
  23. A. E. Siegman, Lasers (University Science, 1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited