OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 21 — Jul. 20, 2009
  • pp: 4108–4117

Determination of the complex refractive indices of aerosol from aerodynamic particle size spectrometer and integrating nephelometer measurements

Yong Han, Daren Lü, Ruizhong Rao, and Yingjian Wang  »View Author Affiliations


Applied Optics, Vol. 48, Issue 21, pp. 4108-4117 (2009)
http://dx.doi.org/10.1364/AO.48.004108


View Full Text Article

Enhanced HTML    Acrobat PDF (1939 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An approach is developed to retrieve the complex index of refraction by coupling two well known instruments: an aerodynamic particle size spectrometer (APS) probe for measuring aerosol size distributions and an integrating nephelometer for measuring total light scattering coefficients. The retrieval is realized by an iterative least squares minimization of the fractional error between the nephelometer-measured light scattering coefficients and those calculated from the APS-measured size distributions based on the Mie theory for spherical particles. High-resolution data collected during two field experiments conducted at two locations with distinct environments in China are analyzed. The results show that light scattering coefficients, aerosol size distributions, and refractive indices all vary substantially with time. Further examination of their dependence on relative humidity suggests that instead of being monotonic change with relative humidity, the refractive index often fluctuates when the relative humidity changes. This nonmonotonic variation of refractive index with relative index suggests concurrent change of relative humidity and other chemical compositions. Possible errors in the retrieval are also discussed.

© 2009 Optical Society of America

OCIS Codes
(010.1100) Atmospheric and oceanic optics : Aerosol detection
(010.1110) Atmospheric and oceanic optics : Aerosols
(120.5710) Instrumentation, measurement, and metrology : Refraction
(290.1090) Scattering : Aerosol and cloud effects
(290.3030) Scattering : Index measurements
(290.5850) Scattering : Scattering, particles

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: November 6, 2008
Revised Manuscript: June 21, 2009
Manuscript Accepted: June 21, 2009
Published: July 13, 2009

Citation
Yong Han, Daren Lü, Ruizhong Rao, and Yingjian Wang, "Determination of the complex refractive indices of aerosol from aerodynamic particle size spectrometer and integrating nephelometer measurements," Appl. Opt. 48, 4108-4117 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-21-4108


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. J. Charlson, J. E. Lovelock, M. O. Andreae, and S. G. Warren, “Oceanic phytoplankton, atmospheric sulphur, cloud albedo, and climate,” Nature 326, 655-661 (1987).
  2. X. Zhou, S. Tao, and K. Yao, Advanced Atmospheric Physics (Meteorology Publishing House, 1991).
  3. D. A. Hegg, P. V. Hobbs, S. Gasso, J. D. Nance, and A. L. Rangno, “Aerosol measurements in the Arctic relevant to direct and indirect radiative forcing,” J. Geophys. Res. 101, 23349-23363 (1996). [CrossRef]
  4. Y. Liu and P. H. Daum, “Anthropogenic aerosols: indirect warming effect from dispersion forcing,” Nature 419, 580-581 (2002).
  5. V. Ramanathan, P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld, “Aerosols, climate, and the hydrological cycle,” Science 294, 2119-2124 (2001). [CrossRef]
  6. J. Liu and J. Diamond, “China's environment in a globalizing world,” Nature 435, 1179-1186 (2005).
  7. Y. Han, T. Wang, R. Rao, and Y. Wang, “The research progress on physic-optics characteristics of atmospheric aerosol,” Acta Phys. Sin. 57, 7396-7407 (2008) (in Chinese).
  8. C. Xie, T. Nishizawa, N. Sugimoto, I. Matsui, and Z. F. Wang, “Characteristics of aerosol optical properties in pollution and Asian dust episodes over Beijing, China,” Appl. Opt. 47, 4945-4951 (2008). [CrossRef]
  9. J. L. Machol, R. D. Marchbanks, C. J. Senff, B. J. McCarty, W. L. Eberhard, W. A. Brewer, R. A. Richter, R. J. Alvarez, D. C. Law, A. M. Weickmann, and S. P. Sandberg, “Scanning tropospheric ozone and aerosol lidar with double-gated photomultipliers,” Appl. Opt. 48, 512-524 (2009). [CrossRef]
  10. S. J. Ghan and S. E. Schwartz, “Aerosol properties and processes: a path from field and laboratory measurements to global climate models,” Bull. Am. Meteorol. Soc. 88, 1059-1083 (2007). [CrossRef]
  11. C. H. Chan, “Effective absorption for thermal blooming due to aerosols,” Appl. Phys. Lett. 26, 628-629 (1975). [CrossRef]
  12. F. G. Gebhardt, “High power laser propagation,” Appl. Opt. 15, 1479-1493 (1976). [CrossRef]
  13. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983), pp. 28-30.
  14. V. B. Krapchev, “Atmospheric thermal blooming and beam clearing by aerosol vaporization,” Proc. SPIE 1221, 91-105(1990).
  15. X. Yang, J. Wang, Y. Liu, and D. Wan, “Aerosol induced air breakdown with Nd:YAG pulsed laser radiation,” High Power Laser Particle Beams 9, 157-160 (1997) (in Chinese).
  16. L. Y. Chen, M. C. Chou, L. K. Hwang, W. Y. Lin, C. C. Chen, and F. T. Jeng, “Aerosol scattering coefficients at different humidities,” J. Aerosol Sci. 31 (suppl.), 983-984 (2000). [CrossRef]
  17. K. N. Liou, An Introduction to Atmospheric Radiation, 2nd ed. (Elsevier, 2002).
  18. G. Yamamoto and M. Tanaka, “Increase of global albedo due to air pollution,” J. Atmos. Sci. 29, 1405-1412 (1972). [CrossRef]
  19. V. Ramanathan, M. V. Ramana, G. Roberts, D. Kim, C. Corrigan, C. Chung, and D. Winker, “Warming trends in Asia amplified by brown cloud solar absorption,” Nature 448, 575-578 (2007).
  20. R. Eiden, “Determination of the complex index of refraction of spherical aerosol particles,” Appl. Opt. 10, 749-754 (1971). [CrossRef]
  21. C. I. Lin, M. Baker, and R. J. Charlson, “Absorption coefficient of atmospheric aerosol: a method for measurement,” Appl. Opt. 12, 1356-1363 (1973). [CrossRef]
  22. M. Z. Hansen and W. H. Evans, “Polar nephelometer for atmospheric particulates studies,” Appl. Opt. 19, 3389-3395 (1980). [CrossRef]
  23. F. Zhao, Z. Gong, H. Hu, and M. Tanaka, “Simulataneous determination of the aerosol complex index of refraction and size distribution from scattering measurements of polarized light,” Appl. Opt. 36, 7992-8001 (1997). [CrossRef]
  24. F. Zhao, “Determination of complex index of refraction and size distribution of aerosols from polar nephelometer measurements,” Appl. Opt. 38, 2331-2336 (1999). [CrossRef]
  25. P. Romanov, N. T. O'Neill, A. Royer, and Bruce L. J. McArthur, “Simultaneous retrieval of aerosol refractive index and particle size distribution from ground-based measurements of direct and scattered solar radiation,” Appl. Opt. 38, 7305-7320 (1999). [CrossRef]
  26. W. Tian and C. Chen, “Parameterization of optical characteristics of aerosols over Lanzhou city in winter,” Sci. Atmos. Sin. 20, 235-242 (1996) (in Chinese).
  27. W. Tian, C. Chen, and J. Huang, “Spectral character and complex refractive index of the winter aerosol over Lanzhou city,” J. Lanzhou Univ. 32, 126-132 (1996).
  28. Q. Guo, H. Hu, and J. Zhou, “Measurement of elemental carbon in the atmospheric aerosol and correlation with its imaginary refractive index,” Sci. Atmos. Sin. 20, 633-639 (1996). (in Chinese)
  29. Y. Liu and P. H. Daum, “The effect of referactive index on size distributions and light scattering coefficients derived from optical particle counters,” J. Aerosol Sci. 31, 945-957(2000). [CrossRef]
  30. P. Guyona, O. Boucher, B. Graham, J. Beck, O. Mayol-Bracero, G. Robertsa, W. Maenhaut, P. Artaxoe, and M. Andreae, “Refractive index of aerosol particles over the Amazon tropical forest during LBA-EUSTACH 1999,” J. Aerosol Sci. 34, 883-907 (2003). [CrossRef]
  31. J. L. Hand and S. M. Kreidenweis, “A new method for retrieving particle refractive index and effective density from aerosol size distribution data,” Aerosol Sci. Technol. 36, 1012-1026(2002). [CrossRef]
  32. H. Hu, X. Li, Y. Zhang, and T. Li, “Determination of the refractive index and size distribution of aerosol from dual-scattering-angle optical particle counter measurements,” Appl. Opt. 45, 3864-3870 (2006). [CrossRef]
  33. Y. Liu and P. H. Daum, “Relationship of refractive index to mass density and self-consistency of mixing rules for multicomponent mixtures like ambient aerosols,” J. Aerosol Sci. 39, 974-986 (2008). [CrossRef]
  34. K. M. Adams, “Real-time in situ measurements of atmospheric optical absorption in the visible via photoacoustic spectroscopy. 1. Evaluation of the photoacoustic cells,” Appl. Opt. 27, 4052-4056 (1988). [CrossRef]
  35. P. H. McMurray, “A review of atmospheric aerosol measurements,” Atmos. Environ. 34, 1959-1999 (2000).
  36. H. Hu, J. Xu, and Z. Huang, “The characteristics of the imaginary part of aerosol refractive index in some places of eastern China,” Chin. J. Atmos. Sci. 15, 18-23 (1991). (in Chinese)
  37. J. C. Wilson and B. Liu, “Aerodynamic particle size measurement by laser-doppler velocimetry,” J. Aerosol Sci. 11, 139-150(1980). [CrossRef]
  38. T. Nakajima, M. Tanaka, M. Yamano, M. Shiobara, K. Arao, and Y. Nakanishi, “Aerosol optical characteristics in the yellow sand events observed in May, 1982 at Nakasaki. II. Models,” J. Meteorol. Soc. Jpn. 67, 279-291 (1989).
  39. T. M. Peters and D. Leith, “Concentration measurement and counting efficiency of the aerodynamic particle sizer 3321,” J. Aerosol Sci. 34, 627-634 (2003). [CrossRef]
  40. J. K. Agarwal, G. J. Sem, and R. J. Remiaz, “Filter testing with a continuous-flow, single-particle-counting condensation nucleus counter,” TSI Quarterly 11, 3-12 (1985).
  41. J. Shi, R. M. Harrison, and D. Evans, “Comparison of ambient particle surface area measurement by epiphaniometer and SMPS/APS,” Atmos. Environ. 35, 6193-6200 (2001).
  42. S. Shen, P. A. Jaques, Y. Zhu, M. D. Geller, and C. Sioutas, “Evaluation of the SMPS-APS system as a continuous monitor for measuring PM2.5, PM10 and coarse (PM2.5−10) concentrations,” Atmos. Environ. 36, 3939-3950 (2002).
  43. A. Virkkula and R. E. Hillamo, “Three-wavelength nephelometer measurements in the Finnish arctic,” J. Aerosol Sci. 26 (suppl.), S451-S452 (1995). [CrossRef]
  44. T. R. Muraleedharan and M. Radojevic, “Personal particle exposure monitoring using nephelometry during haze in Brunei,” Atmos. Environ. 34, 2733-2738 (2000).
  45. R. G. Beuttell and A. W. Brewer, “Instruments for the measurement of the visual range,” J. Sci. Instrum. 26, 357-359 (1949). [CrossRef]
  46. R. J. Charlson and N. C. Ahlquist, “Integrating nephelometer,” U.S. patent 3563661 (16 February 1971).
  47. B. A. Bodhalne, “Measurement of the Rayleigh scattering properties of some gases with a nephelometer,” Appl. Opt. 18, 121-125 (1979). [CrossRef]
  48. M. Z. Hansen and W. H. Evans, “Polar nephelometer for atmospheric particulates studies,” Appl. Opt. 19, 3389-3395(1980). [CrossRef]
  49. J. B. Rae and J. A. Garland, “A stabilized integrating nephelometer for visibility studies,” Atmos. Environ. 4, 219-223(1970).
  50. J. Heintzenberg and L. Backlin, “A height sensitivity integration nephelometer for airborne air pollution,” Atmos. Environ. 17, 433-436 (1983).
  51. B. A. Bodhaine, “Aerosol measurements at four background sites,” J. Geophys. Res. 88, 10753 (1983). [CrossRef]
  52. M. J. Rood, D. S. Covert, and T. V. Larson, “Hygroscopic properties of atmospheric aerosol in Riverside, California,” Tellus 39B, 383-397 (1987).
  53. B. A. Bodhaine, “Barrow surface aerosol: 1976-1986,” Atmos. Environ. 23, 2357-2369 (1989).
  54. B. A. Bodhaine, J. M. Harris, and G. A. Herbert, “Aerosol light scatting and condensation nuclei measurements at Barrow, Alaska,” Atmos. Environ. 15, 1375-1389 (1981).
  55. M. J. Rood, M. A. Shaw, T. V. Larson, and D. S. Covert, “Ubiquitous nature of ambient metastable aerosol,” Nature 337, 537-539 (1989).
  56. B. A. Bodhaine, C. N. Ahlquist, and R. C. Schenell, “Three-wavelength nephelometer suitable for aircraft measurement of background aerosol scattering coefficient,” Atmos. Environ. A25, 2267-2276 (1991).
  57. R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, and D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 255, 423-430 (1992). [CrossRef]
  58. J. P. Veefkind, J. C. H. van der Hage, and H. M. ten Brink, “Nephelometer derived and directly measured aerosol optical depth of the atmospheric boundary layer,” Atmos. Res. 41, 217-228 (1996). [CrossRef]
  59. F. Li, S. Nyeki, U. Baltensperger, E. Weingartner, M. Lugauer, I. Colbeck, and H. W. Giiggeler, “Aerosol size distribution retrieval from multi-wavelength nephelometer data,” J. Aerosol Sci. 28 (suppl.), S249-S250 (1997). [CrossRef]
  60. S. A. P. Nyecki, I. Colebeck, and R. M. Harrison, “A portable aerosol sampler to measure real-time atmospheric aerosol mass loadings,” J. Aerosol Sci. 23, S687-S690(1992). [CrossRef]
  61. A. D. Shendrikar and W. K. Steinmetz, “Integrating nephelometer measurements for the airborne fine particulate matter (PM2.5) mass concentrations,” Atmos. Environ. 37, 1383-1392 (2003).
  62. K. Werner, “A new polar nephelometer for measurement of atmospheric aerosols,” J. Quant. Spectrosc. Radiat. Transfer 87, 107-117 (2004). [CrossRef]
  63. B. Hu, W. Zhang, L. Zhang, C. Chen, and G. Feng, “A study on scattering properties of aerosol particle over Xigu district of Lanzhou,” Plateau Meteorol. 22, 354-360 (2003) (in Chinese).
  64. Z. Ke, J. Tang, B. Wang, and P. Yang, “Primary analysis of application results of integrating nephelometers in dust storm monitoring network experiment,” Meteorol. Sci. Technol. 32, 258-262 (2004) (in Chinese).
  65. B. Hu, J. Zhang, W. Zhang, C. Chen, and L. Zhang, “A study of the properties of atmospheric aerosol over Lanzhou in winter and applications by using integrating nephelometer,” J. Lanzhou Univ. 41, 9-25 (2005) (in Chinese).
  66. Y. Han, “Measurements and statistical characteristics of atmospheric aerosol optical properties,” Ph.D dissertation (Anhui Institute of Optics and Fine Mechanics, 2006) (in Chinese).
  67. Y. Han, R. Rao, and Y. Wang, “Measurement and analysis of atmospheric visibility and aerosol extinction characteristics based on scattering statistical,” Infrared Laser Eng. 4, 663-666 (2008) (in Chinese).
  68. G. Mie, “Beitrage zur optik trüber medien, spezielle kolloidaller metallosungen,” Ann. Phys. 25, 377-444 (1908).
  69. W. J. Wiscombe, “Mie scattering calculations: advances in technique and fast, vector-speed computer codes,” Technical Note NCAR/TN-140+STR (National Center for Atmospheric Research, June 1979).
  70. W. J. Wiscombe, “Improved Mie scattering algorithms,” Appl. Opt. 19, 1505-1509 (1980). [CrossRef]
  71. V. E. Cachorro and L. L. Salcedo, “New improvements for Mie scattering calculations,” J. Electromagn. Waves Appl. 5, 913-926 (1991).
  72. W. Wang and M. J. Rood, “Real refractive index: dependence on relative humidity and solute composition with relevancy to atmospheric aerosol particles,” J. Geophys. Res. 113, D23305 (2008).
  73. P. Gwaze, G. Helas, H. J. Annegarn, J. Huth, and S. J. Piketh, “Physical, chemical and optical properties of aerosol particles collected over Cape Town during winter haze episodes,” S. Afr. J. Sci. 103, 35-43 (2007).
  74. P. Biswas and C. Y. Wu, “Nanoparticles and the environment,” J. Air Waste Manag. Assoc. 55, 708-746 (2005).
  75. Y. Liu, W. P. Arnott, and J. Hallett, “Particle size distribution retrieval from multispectral optical depth: influences of particle nonsphericity and refractive index,” J. Geophys. Res. 104, 31753-31762 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited