OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 21 — Jul. 20, 2009
  • pp: 4191–4200

Bidirectional reflectance distribution function effects in ladar-based reflection tomography

Xuemin Jin and Robert Y. Levine  »View Author Affiliations


Applied Optics, Vol. 48, Issue 21, pp. 4191-4200 (2009)
http://dx.doi.org/10.1364/AO.48.004191


View Full Text Article

Enhanced HTML    Acrobat PDF (1730 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Light reflection from a surface is described by the bidirectional reflectance distribution function (BRDF). In this paper, BRDF effects in reflection tomography are studied using modeled range-resolved reflection from well-characterized geometrical surfaces. It is demonstrated that BRDF effects can cause a darkening at the interior boundary of the reconstructed surface analogous to the well-known beam hardening artifact in x-ray transmission computed tomography (CT). This artifact arises from reduced reflection at glancing incidence angles to the surface. It is shown that a purely Lambertian surface without shadowed components is perfectly reconstructed from range-resolved measurements. This result is relevant to newly fabricated carbon nanotube materials. Shadowing is shown to cause crossed streak artifacts similar to limited-angle effects in CT reconstruction. In tomographic reconstruction, these effects can overwhelm highly diffuse components in proximity to specularly reflecting elements. Diffuse components can be recovered by specialized processing, such as reducing glints via thresholded measurements.

© 2009 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(100.6950) Image processing : Tomographic image processing
(140.3460) Lasers and laser optics : Lasers
(240.5770) Optics at surfaces : Roughness
(240.6700) Optics at surfaces : Surfaces
(240.3695) Optics at surfaces : Linear and nonlinear light scattering from surfaces

ToC Category:
Image Processing

History
Original Manuscript: May 19, 2009
Manuscript Accepted: June 26, 2009
Published: July 15, 2009

Citation
Xuemin Jin and Robert Y. Levine, "Bidirectional reflectance distribution function effects in ladar-based reflection tomography," Appl. Opt. 48, 4191-4200 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-21-4191


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. K. Knight, D. L. Klick, D. P. Ryan-Howard, and J. R. Theriault, “Visible laser radar: range tomography and angle-angle-range,” Opt. Eng. 30, 55-65 (1991). [CrossRef]
  2. R. M. Marino, T. Stephens, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O'Brian, G. S. Rowe, J. S. Adams, L. Skelly, R. C. Knowlton, S. E. Forman, and W. R. Davis, “A compact 3D imaging laser radar system using geiger-mode APD arrays: systems and measurements,” Proc. SPIE 5086, 1-15 (2003). [CrossRef]
  3. A. L. Kachelmyer, “Range-Doppler imaging: waveforms and receiver design,” Proc. SPIE 999, 138-161 (1988).
  4. C. L. Matson, “Tomographic satellite image reconstruction using ladar E-field or intensity projections: computer simulation results,” Proc. SPIE 2566, 166-176 (1995). [CrossRef]
  5. J. K. Parker, E. B. Craig, D. I. Klick, F. K. Knight, S. R. Kulkarni, R. M. Marino, J. R. Senning, and B. K. Tussey, “Reflective tomography: images from range-resolved laser radar measurements,” Appl. Opt. 27, 2642-2643 (1988). [CrossRef]
  6. F. K. Knight, S. R. Kulkarni, R. M. Marino, and J. K. Parker, “Tomographic techniques applied to laser radar reflective measurements,” Lincoln Lab. J. 2, 143-159 (1989).
  7. S. A. Hanes, V. N. Benham, J. B. Lasche, and K. B. Rowland, “Field demonstration and characterization of a 10.6 micronreflection tomography imaging system,” Proc. SPIE 4167, 230-241 (2001). [CrossRef]
  8. C. L. Matson and J. Boger, “Laboratory validation of range-resolved reflective tomography signal-to-noise expressions,” Appl. Opt. 36, 3165-3173 (1997). [CrossRef]
  9. F. E. Nicodemus, “Directional reflectance and emissivity of an opaque surface,” Appl. Opt. 4, 767-773 (1965). [CrossRef]
  10. B. P. Sandford and D. C. Robertson, Infrared reflectance properties of aircraft paints, U. S. Air Force Research Laboratory PreprintAFRL/VSBT ESC-94-1004, approved for public release August 1994.
  11. W. C. Snyder, “Structured surface bidirectional reflectance distribution function reciprocity, theory and counterexamples,” Appl. Opt. 41, 4307-4313 (2002). [CrossRef]
  12. R. M. Watson and P. N. Raven, “Comparison of Measured BRDF Data with Parameterized Reflectance Models,” Proc. SPIE 4370, 159-168 (2001). [CrossRef]
  13. J. J. Koenderink and A. J. van Doorn, “Phenomenological description of bidirectional surface reflection,” J. Opt. Soc. Am. A 15, 2903-2912 (1998). [CrossRef]
  14. R. A. Brooks and G. D. Chiro, “Beam hardening in X-ray reconstruction tomography,” Phys. Med. Biol. 21, 390-398(1976). [CrossRef]
  15. G. T. Herman, “Correction for beam hardening in computed tomography,” Phys. Med. Biol. 24, 81-106 (1979). [CrossRef]
  16. Z. Li, G. Hewei, L. Shuanglei, C. Zhiqiang, and X. Yuxiang, “Cupping artifacts analysis and correction for a FPD-based cone-beam CT, Proc. SPIE 6065, 60650K (2006). [CrossRef]
  17. P. K. Kijewski and B. E. Bjarngard, “Correction for beam hardening in computed tomography,” Med. Phys. 5, 209-214(1978). [CrossRef]
  18. R. E. Alverez and A. Macovski, “Energy-selective reconstructions in x-ray computerized tomography,” Phys. Med. Biol. 21, 733-744 (1976). [CrossRef]
  19. M. E. Davison and F. A. Grunbaum, “Tomographic reconstruction with arbitrary directions,” Commun. Pure Appl. Math. 34, 77-120 (1981). [CrossRef]
  20. A. K. Louis, “Picture reconstruction from projections in restricted range,” Math. Meth. Appl. Sci. 2, 209-220 (1980). [CrossRef]
  21. K. C. Tam, V. Perez-Mendez, and B. Macdonald, “Limited angle 3-D reconstructions from continuous and pinhole projections,” IEEE Trans. Nucl. Sci. 27, 445-458 (1980). [CrossRef]
  22. M. Ravichandran and F. C. Gouldin, “Reconstruction of smooth distributions from a limited number of projections,” Appl. Opt. 27, 4084-4097 (1988). [CrossRef]
  23. F. Natterer, The Mathematics of Computerized Tomography (Wiley, 1986), Chap. 6, pp. 160-166.
  24. L. A. Shepp and B. F. Logan, “Reconstructing interior head tissue from x-ray transmissions,” IEEE Trans. Nucl. Sci. 21, 228-236 (1974). [CrossRef]
  25. Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446-451 (2008). [CrossRef]
  26. C. Srinivasan, “The blackest black material from carbon nanotubes,” Curr. Sci. 94, 974-975 (2008).
  27. G. N. Ramachandran and A. V. Lakshminarayanan, “Three-dimensional reconstruction from radiographs and electron micrographs: application of convolutions instead of Fourier transforms,” Proc. Natl. Acad. Sci. USA 68, 2236-2240 (1971). [CrossRef]
  28. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE, 1988).
  29. R. L. Siddon, “Fast calculation of the exact radiological path for a three-dimensional CT array,” Med. Phys. 12, 252-255(1985). [CrossRef]
  30. T. S. Trowbridge and K. P. Reitz, “Average irregularity representation of a rough surface for ray reflection,” J. Opt. Soc. Am. 65, 531-536 (1975). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited