OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 21 — Jul. 20, 2009
  • pp: 4213–4218

Variable optical attenuator using thermo-optic two-mode interference device with fast response time

Partha P. Sahu  »View Author Affiliations

Applied Optics, Vol. 48, Issue 21, pp. 4213-4218 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (428 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A thermo-optic two-mode interference (TMI) waveguide structure with a silicon trench and heat- insulating grooves in both sides of the core has been proposed for a variable optical attenuator (VOA) with fast response time. Thermal analysis of the proposed thermo-optic TMI waveguide structure with a silicon oxinitride (SiON) core has been performed by using the implicit finite difference method. The heating power required to achieve the attenuated power of 25.5 dB for a VOA with a silicon trench is 460 mW , which is approximately 1.8 times less than that of a VOA without a silicon trench. The response time is estimated as 98 μs , which is faster than the response time of the existing VOA.

© 2009 Optical Society of America

OCIS Codes
(060.2430) Fiber optics and optical communications : Fibers, single-mode
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Integrated Optics

Original Manuscript: February 12, 2009
Revised Manuscript: June 16, 2009
Manuscript Accepted: June 22, 2009
Published: July 15, 2009

Partha P. Sahu, "Variable optical attenuator using thermo-optic two-mode interference device with fast response time," Appl. Opt. 48, 4213-4218 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Aisawa, A. Watanabe, T. Goh, Y. Takigawa, and M. Koga, “Advances in optical path crossconnect systems using planar lightwave circuit switching technologies,” IEEE Commun. Mag. 41(), 54-57 (2003). [CrossRef]
  2. M. Koga, A. Watanbe, and S. Okamoto, “8×16 delivery and coupling type optical switches for 320 gbit/s throughput optical path cross-connect system,” in Optical Fiber Communication, Vol. 2 of OSA Technical Digest Series (Optical Society of America, 1996), pp. 259-261.
  3. K. Hirabayashi, M. Wada, and C. Amano, “Liquid crystal variable optical attenuatorsintegrated on planar lightwave circuits,” IEEE Photon. Technol. Lett. 13, 609-611(2001). [CrossRef]
  4. R. Saini, A. Geisberger, K. Tsui, C. Nistorica, M. Ellis, and G. Skidmore, “Assembled MEMS VOA,” in 2003 IEEE/LEOS International Conference on Optical MEMS (IEEE, 2003), pp 139-140.
  5. M. C. Oh, S. H. Cho, Y. O. Noh, H. J. Lee, J. J. Joo, and M. H. Lee, “Variable optical attenuator based on large-core single mode polymer waveguide,” IEEE Photon. Technol. Lett. 17, 1890-1892 (2005). [CrossRef]
  6. X. Jiang, X. Li, H. Zhou, J. Yang, M. Wang, Y. Wu, and S. Ishikawa, “Compact variable optical attenuator based on multimode interference coupler,” IEEE Photon. Technol. Lett. 17, 2361-2363 (2005). [CrossRef]
  7. S. M. Garner and S. Caracci, “Variable optical attenuator for large scale integration,” IEEE Photon. Technol. Lett. 14, 1560-1562 (2002). [CrossRef]
  8. F. Xia, M. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact higher ring resonator Filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express 15, 11934-11941 (2007). [CrossRef] [PubMed]
  9. A. K. Das and P. P. Sahu, “Compact integrated optical devices using high index contrast waveguides,” in 2006 IFIP International Conference on Wireless and Optical Communication Networks,” (IEEE,2006), (1-5. [CrossRef]
  10. Y. Chung, J. C. Yi, S. H. Kim, and S. S. Choi, “Analysis of tunable multichannel two-mode interference wavelength division multiplexer/demultiplexer,” J. Lightwave Technol. 7, 766-777(1989). [CrossRef]
  11. B. Li and S. J. Chua, “Two mode interference photonic waveguide switch,” IEEE J. lightwave Technol. 21, 1685-1690(2003). [CrossRef]
  12. M. P. Earnshaw, M. A. Cappuzzo, E. Chen, L. Gomez, and A. Wong-Foy, “Ultra-low power thermo-optic silica on silicon waveguide membrane switch,” IEE Electron. Lett. 43, 393-394 (2007). [CrossRef]
  13. R. Kasahara, M. Yanagisawa, T. Goh, A. Sugita, A. Himeno, M. Yasu, and S. Matsui, “New structures of silica-based planar light wave circuits for low power thermo-optic switch and its application to 8×8 optical matrix switch,” J. Lightwave Technol. 20,993-1000 (2002). [CrossRef]
  14. A. K. Das and P. P. Sahu, “Minimization of heating power for thermo-optic waveguide type devices,” J. Opt. 32, 151-167(2003).
  15. Y. Inoue, K. Katoh, and M. Kawachi, “Polarization sensitivity of a silica waveguide thermo-optic phase shifter for planar light wave circuits,” IEEE Photon. Technol. Lett. 4, 36-38(1992). [CrossRef]
  16. P. P. Sahu, “Polarization insensitive thermally tunable add/drop multiplexer using cascaded Mach-Zehnder coupler,” Appl. Phys. B 92, 247-252 (2008). [CrossRef]
  17. H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, 1989).
  18. P. P. Sahu, “Silicon oxinitride: a material for compact waveguide device,” Indian J. Phys. 82, 265-272 (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited