OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 21 — Jul. 20, 2009
  • pp: 4256–4262

Path-averaged C n 2 estimation using a laser-and-corner-cube system

Walter P. Cole and Michael A. Marciniak  »View Author Affiliations


Applied Optics, Vol. 48, Issue 21, pp. 4256-4262 (2009)
http://dx.doi.org/10.1364/AO.48.004256


View Full Text Article

Enhanced HTML    Acrobat PDF (447 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

As a finite cross-section laser beam propagates through the atmosphere, the beam spreads due to both diffraction and atmospheric turbulence effects. Using turbulence theory valid in both weak and strong optical turbulence regimes, a relationship between atmospheric beam spread and the resulting return power for an optical system and the refractive-index structure parameter or C n 2 can be established. A technique for estimating the path-averaged C n 2 using a laser-and-corner-cube system based on this relationship is described. Experimental results using near-infrared laser wavelengths show good agreement between theoretical predictions and scintillometer-measured C n 2 values for near-ground line-of-sight propagation paths.

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(010.3310) Atmospheric and oceanic optics : Laser beam transmission

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: April 2, 2009
Revised Manuscript: June 16, 2009
Manuscript Accepted: June 24, 2009
Published: July 17, 2009

Citation
Walter P. Cole and Michael A. Marciniak, "Path-averaged Cn2 estimation using a laser-and-corner-cube system," Appl. Opt. 48, 4256-4262 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-21-4256


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. S. Lawrence, G. R. Ochs, and S. F. Clifford, “Measurements of atmospheric turbulence relevant to optical propagation,” J. Opt. Soc. Am. 60, 826-830 (1970). [CrossRef]
  2. J. C. Wyngaard, Y. Izumi, and S. Collins, “Behavior of the refractive-index-structure parameter near the ground,” J. Opt. Soc. Am. 61, 1646-1650 (1971). [CrossRef]
  3. F. D. Eaton, “Recent developments of optical turbulence measurement techniques,” Proc. SPIE 5793, 68-77 (2005). [CrossRef]
  4. F. S. Vetelino, B. Clare, K. Corbett, C. Young, K. Grant, and L. Andrews, “Characterizing the propagation path in moderate to strong optical turbulence,” Appl. Opt. 45, 3534-3543 (2006). [CrossRef]
  5. F. S. Vetelino, K. Grayshan, and C. Y. Young, “Inferring path average Cn2 values in the marine environment,” J. Opt. Soc. Am. A 24, 3198-3206 (2007). [CrossRef]
  6. M. J. Vilcheck, A. E. Reed, H. R. Burris, W. J. Scharpf, C. Moore, and M. R. Suite, “Multiple methods for measuring atmospheric turbulence,” Proc. SPIE 4821, 300-309 (2002). [CrossRef]
  7. E. L. Andreas, “Estimating Cn2 over snow and sea ice from meteorological data,” J. Opt. Soc. Am. A 5, 481-495 (1988). [CrossRef]
  8. M. L. Wesely and Z. I. Derzko, “Atmospheric turbulence parameters from visual resolution,” Appl. Opt. 14, 847-853 (1975). [CrossRef]
  9. A. MacDonald, S. C. Cain, and E. E. Armstrong, “Maximum a posteriori image and seeing condition estimation from partially coherent two-dimensional light detection and ranging images,” Opt. Eng. 45, 086201 (2006). [CrossRef]
  10. S. Zamek and Y. Yitzhaky, “Turbulence strength estimation from an arbitrary set of atmospherically degraded images,” J. Opt. Soc. Am. A 23, 3106-3113 (2006). [CrossRef]
  11. N. Sugimoto, K. P. Chan, and D. K. Killinger, “Video camera measurements of atmospheric turbulence using the telescope image of a distant light source,” Appl. Opt. 30, 365-367 (1991). [CrossRef]
  12. Y. Glick, R. Zaibel, G. Bar-Tal, and Y. Bar-Sagi, “Atmospheric turbulence measurements by angle of arrival fluctuations and intensity scintillations with large aperture,” in 2000 Conference on Lasers and Electro-Optics Europe (CLEO 2000) (Optical Society of America, 2000), p. 244.
  13. Y. Jiang, J. Ma, L. Tan, S. Yu, and W. Du, “Measurement of optical intensity fluctuation over an 11.8 km turbulent path,” Opt. Express 16, 6963-6973 (2008). [CrossRef]
  14. G. G. Gimmestad and D. W. Roberts, “Laser remote sensing of atmospheric turbulence,” Proc. SPIE 5087, 167-172 (2003). [CrossRef]
  15. R. A. Johnston, N. J. Wooder, F. C. Reavell, M. Bernhardt, and C. Dainty, “Horizontal scintillation detection and ranging Cn2(z) estimation,” Appl. Opt. 42, 3451-3459 (2003). [CrossRef]
  16. R. G. Frehlich, “Estimation of the parameters of the atmospheric turbulence spectrum using measurements of the spatial intensity covariance,” Appl. Opt. 27, 2194-2198 (1988). [CrossRef]
  17. R. J. Hill, “Comparison of scintillation methods for measuring the inner scale of turbulence,” Appl. Opt. 27, 2187-2193 (1988). [CrossRef]
  18. V. P. Lukin, “Influence of the source spectrum on the optical measurements of turbulence,” Appl. Opt. 48, A93-A97 (2009). [CrossRef]
  19. N. Védrenne, V. Michau, C. Robert, and J. Conan, “Cn2 profile measurement from Shack-Hartmann data,” Opt. Lett. 32, 2659-2661 (2007). [CrossRef]
  20. N. Sugimoto, K. P. Chan, and D. K. Killinger, “Video camera measurements of atmospheric turbulence using the telescope image of a distant light source,” Appl. Opt. 30, 365-367 (1991). [CrossRef]
  21. D. L. Hutt, “Modeling and measurements of atmospheric optical turbulence over land,” Opt. Eng. 38, 1288-1295 (1999). [CrossRef]
  22. S. Bendersky, N. S. Kopeika, and N. Blaunstein, “Atmospheric optical turbulence over land in Middle East coastal environments: prediction modeling and measurements,” Appl. Opt. 43, 4070-4079 (2004). [CrossRef]
  23. D. K. Barton, Modern Radar System Analysis (Artech, 1988).
  24. J. Wang, “Radar range equation for meteorological targets,” in Proceedings of 1996 Chinese Institute of Electronics (CIE) International Conference of Radar, ICR'96 (IEEE, 1996), pp. 561-565.
  25. P. E. Johnston, L. M. Hartten, C. H. Love, D. A. Carter, and K. S. Gage, “Range errors in wind profiling caused by strong reflectivity gradients,” J. Atmos. Ocean. Technol. 19, 934 (2002). [CrossRef]
  26. C. Cooke, J. Cernius, and A. J. LaRocca, “Ranging, Communications, and Simulation Systems,” in The Infrared Handbook, W. L. Wolfe and G. J. Zissis, eds. (IRIA Center, Environmental Research Institute of Michigan, for the Office of Naval Research, Department of the Navy, 1985), Chap. 23, p. 23-6.
  27. O. Steinvall, “Effects of target shape and reflection on laser radar cross sections,” Appl. Opt. 39, 4381-4391 (2000). [CrossRef]
  28. J. W. Strohbehn, “Line of sight wave propagation through the turbulent atmosphere,” Proc. IEEE 56, 1301-1318 (1968). [CrossRef]
  29. V. I. Klyatskin and V. I. Tatarskii, “On the theory of the propagation of light beams in a medium having random inhomogeneities,” Radiophys. Quantum Electron. 13, 828-833 (1970). [CrossRef]
  30. R. L. Fante, “Electromagnetic beam propagation in turbulent media,” Proc. IEEE 63, 1669-1692 (1975). [CrossRef]
  31. I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Free-space optical system performance for laser beam propagation through non-Kolmogorov turbulence,” Opt. Eng 47, 026003(2008). [CrossRef]
  32. W. P. Cole, M. A. Marciniak, and M. B. Haeri, “Atmospheric-turbulence-effects correction factors for the laser range equation,” Opt. Eng. 47, 126001 (2008). [CrossRef]
  33. L. C. Andrews and R. L. Phillips, “Mean irradiance and beam spread,” in Laser Beam Propagation through Random Media (SPIE, 2005), pp. 237-238.
  34. W. P. Brown, Jr., “Second moment of a wave propagating in a random medium,” J. Opt. Soc. Am. 61, 1051-1059 (1971). [CrossRef]
  35. V. E. Zuev, translated by S. Wood, Laser Beams in theAtmosphere (Consultants Bureau, 1982).
  36. G. P. Berman and A. A. Chumak, “Photon distribution function for long-distance propagation of partially coherent beams through the turbulent atmosphere,” Phys. Rev. A 74, 013805 (2006). [CrossRef]
  37. J. C. Ricklin and F. M. Davidson, “Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication,” J. Opt. Soc. Am. A 19, 1794-1802 (2002). [CrossRef]
  38. G. P. Berman, A. A. Chumak, and V. N. Gorshkov, “Beam wandering in the atmosphere: the effect of partial coherence,” Phys. Rev. E 76, 056606-7 (2007). [CrossRef]
  39. Y. Dikmelik and F. Davidson, “Fiber-coupling efficiency for free-space optical communication through atmospheric turbulence,” Appl. Opt. 44, 4946-4952 (2005). [CrossRef]
  40. J. F. Holmes, “Enhancement of backscattered intensity for a bistatic lidar operating in atmospheric turbulence,” Appl. Opt. 30, 2643-2646 (1991). [CrossRef]
  41. L. C. Andrews and R. L. Phillips, “Backscatter amplification factor: strong fluctuations,” in Laser Beam Propagation through Random Media (SPIE, 2005), pp. 577-581.
  42. V. P. Lukin, “Statistical characteristics of the phase of specularly reflected optical waves,” in Atmospheric Adaptive Optics (SPIE, 1995), pp. 69-76.
  43. User Manual BLS-900, Scintec Boundary Layer Scintillometer, Revision 1.43 (Scintec AG, 2007), http://www.scintec.com/.
  44. F. M. Davidson, S. Bucaille, G. C. Gilbreath, and E. Oh, “Measurements of intensity scintillations and probability density functions of retroreflected broadband 980 nm laser light in atmospheric turbulence,” Opt. Eng. 43, 2689-2695 (2004). [CrossRef]
  45. A. Tunick, “Optical turbulence parameters characterized via optical measurements over a 2.33 km free-space laser path,” Opt. Express 16, 14645-14654 (2008). [CrossRef]
  46. A. Tunick, “Statistical analysis of measured free-space laser signal intensity over a 2.33 km optical path,” Opt. Express 15, 14115-14122 (2007). [CrossRef]
  47. L. C. Andrews and R. L. Phillips, “Weak and strong fluctuation conditions,” in Laser Beam Propagation through Random Media (SPIE, 2005), pp. 140-141.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited