OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 21 — Jul. 20, 2009
  • pp: 4263–4269

Laser-induced damage investigation at 1064 nm in K Ti O P O 4 crystals and its analogy with Rb Ti O P O 4

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, M. Commandré, F. Théodore, and H. Albrecht  »View Author Affiliations

Applied Optics, Vol. 48, Issue 21, pp. 4263-4269 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (806 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Bulk laser-induced damage at 1064 nm has been investigated in K Ti O P O 4 (KTP) and Rb Ti O P O 4 (RTP) crystals with a nanosecond pulsed Nd : YAG laser. Both crystals belong to the same family. Throughout this study, their comparison shows a very similar laser-damage behavior. The evolution of the damage resistance under a high number of shots per site (10,000 shots) reveals a fatigue effect of KTP and RTP crystals. In addition, S-on-1 damage probability curves have been measured in both crystals for all combinations of polarization and propagation direction aligned with the principal axes of the crystals. The results show an influence of the polarization on the laser-induced damage threshold (LIDT), with a significantly higher threshold along the z axis, whereas no effect of the propagation direction has been observed. This LIDT anisotropy is discussed with regard to the crystallographic structure.

© 2009 Optical Society of America

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(160.2100) Materials : Electro-optical materials
(160.4330) Materials : Nonlinear optical materials
(260.1180) Physical optics : Crystal optics

ToC Category:
Lasers and Laser Optics

Original Manuscript: May 11, 2009
Manuscript Accepted: July 6, 2009
Published: July 17, 2009

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, M. Commandré, F. Théodore, and H. Albrecht, "Laser-induced damage investigation at 1064 nmin KTiOPO4 crystals and its analogy with RbTiOPO4," Appl. Opt. 48, 4263-4269 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Bierlein and H. Vanherzeele, “Potassium titanyl phosphate: properties and new applications,” J. Opt. Soc. Am. B 6, 622-633 (1989). [CrossRef]
  2. M. Roth, M. Tseitlin, and N. Angert, “Composition-dependent electro-optic and nonlinear optical properties of KTP-family crystals,” Opt. Mater. 28, 71-76 (2006). [CrossRef]
  3. Yu. S. Oseledchik, A. I. Pisarevsky, A. L. Prosvirnin, V. V. Starshenko, and N. V. Svitanko, “Nonlinear optical properties of the flux grown RbTiOPO4 crystal,” Opt. Mater. 3, 237-242 (1994). [CrossRef]
  4. K. Zhang and X. Wang, “Structure sensitive properties of KTP-type crystals,” Chin. Sci. Bull. 46, 2028-2036 (2001).
  5. G. D. Stucky, M. L. F. Phillips, and T. E. Gier, “The potassium titanyl phosphate structure field: a model for new nonlinear optical materials,” Chem. Mater. 1, 492-509 (1989). [CrossRef]
  6. M. Munowitz, R. H. Jarman, and J. F. Harrison, “Theoretical study of the nonlinear optical properties of KTiOPO4: effects of Ti-O-Ti bond angles and oxygen electronegativity,” Chem. Mater. 5, 1257-1267 (1993). [CrossRef]
  7. F. R. Wagner, A. Hildenbrand, J.-Y. Natoli, M. Commandre, F. Theodore, and H. Albrecht, “Laser damage resistance of RbTiOPO4: evidence of polarization dependent anisotropy,” Opt. Express 15, 13849-13857 (2007). [CrossRef]
  8. M. G. Roelofs, “Identification of Ti3+ in potassium titanyl phosphate and its possible role in laser damage,” J. Appl. Phys. 65, 4976-4982 (1989). [CrossRef]
  9. M. P. Scripsick, D. N. Loiacono, J. Rottenberg, S. H. Goellner, L. E. Halliburton, and F. K. Hopkins, “Defects responsible for gray tracks in flux grown KTP,” Appl. Phys. Lett. 66, 3428 (1995). [CrossRef]
  10. J. K. Tyminski, “Photorefractive damage in KTP used as second-harmonic generator,” J. Appl. Phys. 70, 5570-5576 (1991). [CrossRef]
  11. J. C. Jacco, D. R. Rockafellow, and E. A. Teppo, “Bulk darkening threshold of flux grown KTP,” Opt. Lett. 16, 1307-1309 (1991). [CrossRef]
  12. X. B. Hu, J. Y. Wang, H. J. Zhang, H. D. Jiang, H. Liu, X. D. Mu, and Y. J. Ding, “Dependence of photochromic damage on polarization in KTiOPO4 crystals,” J. Cryst. Growth 247, 137-140 (2003). [CrossRef]
  13. H. Yoshida, T. Jitsuno, H. Fujita, M. Nakatsuka, T. Kamimura, M. Yoshimura, T. Sasaki, A. Miyamoto, and K. Yoshida, “Laser-induced damage in nonlinear crystals on irradiation direction and polarization,” Proc. SPIE 3902, 418-422(2000). [CrossRef]
  14. L. Gallais and J.-Y. Natoli, “Optimized metrology for laser damage measurement: application to multiparameter study,” Appl. Opt. 42, 960-971 (2003). [CrossRef]
  15. A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47, 083603 (2008). [CrossRef]
  16. “Determination of laser-induced threshold of optical surfaces--Part 2: S-on-1 test,” ISO 11254-2 (International Organization for Standardization, 2001).
  17. “Determination of laser-induced threshold of optical surfaces--Part 1: 1-on-1 test,” ISO 11254-1 (International Organization for Standardization, 2000).
  18. J.-Y. Natoli, B. Bertussi, and M. Commandré, “Effect of multiple laser irradiations on silica at 1064 and 355 nm,” Opt. Lett. 30, 1315-1317 (2005). [CrossRef]
  19. T. Olivier, “Contribution à la métrologie de l'indice de réfraction et de l'absorption non-linéaires dans le régime nanoseconde: Amélioration de la méthode de z-scan et simulations numériques,” Ph.D. thesis (Université Paul Cézanne Aix-Marseille III, 2004).
  20. R. DeSalvo, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Z-scan measurements of the anisotropy of nonlinear refraction and absorption in crystals,” Opt. Lett. 18, 194-196 (1993). [CrossRef]
  21. B. Boulanger, I. Rousseau, and G. Marnier, “Cubic optical nonlinearity of KTiOPO4,” J. Phys. B 32, 475-488 (1999). [CrossRef]
  22. H. Li, F. Zhou, X. Zhang, and W. Ji, “Bound electronic Kerr effect and self-focusing induced damage in second-harmonic-generation crystals,” Opt. Commun. 144, 75-81 (1997). [CrossRef]
  23. K. Kato, “Parametric oscillation at 3.2 μm in KTP pumped at 1.064 μm,” IEEE J. Quantum Electron. 27, 1137-1140 (1991). [CrossRef]
  24. L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007). [CrossRef]
  25. P. DeMange, C. W. Carr, H. B. Radousky, and S. G. Demos, “System for evaluation of laser-induced damage performance of optical materials for large aperture lasers,” Rev. Sci. Instrum. 75, 3298-3301 (2004). [CrossRef]
  26. H. Krol, L. Gallais, C. Grèzes-Besset, J.-Y. Natoli, and M. Commandré, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256, 184-189 (2005). [CrossRef]
  27. A. E. Chmel, “Fatigue laser-induced damage in transparent materials,” Mater. Sci. Eng. B 49, 175-190 (1997). [CrossRef]
  28. S. Favre, “Génération de deuxième et troisième harmonique avec un laser Nd:YAG en régime pulsé libre,” Ph.D. thesis (Ecole polytechnique fédérale de Lausanne, 2001).
  29. J. R. Quagliano, R. R. Petrin, T. C. Trujillo, R. Wenzel, L. J. Jolin, M. T. Paffett, C. J. Maggiore, N. J. Cockroft, and J. C. Jacco, “Materials characterization, optical spectroscopy, and laser damage studies of electrochromically and photochromically damaged KTP,” Proc. SPIE 2428, 4-11 (1995). [CrossRef]
  30. K. Noda, W. Sakamoto, T. Yogo, and S. Hirano, “Dielectric properties of KTiOPO4 single crystals at low temperature,” J. Mater. Sci. Lett. 19, 69-72 (2000). [CrossRef]
  31. Y. Jiang, L. E. Halliburton, M. Roth, M. Tseitlin, and N. Angert, “Hyperfine structure associated with the dominant radiation-induced trapped hole center in RbTiOPO4 crystals,” Phys. Status Solidi B 242, 2489-2496 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited