OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 22 — Aug. 1, 2009
  • pp: 4302–4309

Cost-effective bandwidth-reduced Brillouin optical time domain reflectometry using a reference Brillouin scattering beam

Daisuke Iida and Fumihiko Ito  »View Author Affiliations


Applied Optics, Vol. 48, Issue 22, pp. 4302-4309 (2009)
http://dx.doi.org/10.1364/AO.48.004302


View Full Text Article

Enhanced HTML    Acrobat PDF (875 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a simple and cost-effective technique that can reduce the electrical bandwidth for Brillouin frequency-shift sensors with heterodyne detection without the need for expensive instruments or a complicated system. With this technique we use only a reference fiber. The reference Brillouin scattering light in the reference fiber is used as a local light for heterodyne detection. We confirm that this method can be used for measuring the Brillouin scattering spectrum distribution with a much lower frequency bandwidth ( 0.2 GHz ) than that employed for conventional heterodyne detection ( 11 GHz ). The method operates in a way similar to conventional Brillouin optical time domain reflectometry with comparable accuracy. Moreover, we successfully demonstrate temperature distribution sensing and show that we can compensate for temperature variation in the reference fiber.

© 2009 Optical Society of America

OCIS Codes
(060.2300) Fiber optics and optical communications : Fiber measurements
(060.2370) Fiber optics and optical communications : Fiber optics sensors

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: April 7, 2009
Revised Manuscript: June 1, 2009
Manuscript Accepted: June 29, 2009
Published: July 21, 2009

Citation
Daisuke Iida and Fumihiko Ito, "Cost-effective bandwidth-reduced Brillouin optical time domain reflectometry using a reference Brillouin scattering beam," Appl. Opt. 48, 4302-4309 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-22-4302


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296-1302 (1995). [CrossRef]
  2. S. M. Maughan, H. H. Kee, and T. P. Newson, “A calibrated 27 km distributed fiber temperature sensor based on microwave heterodyne detection of spontaneous Brillouin scattered power,” IEEE Photonics Technol. Lett. 13, 511-513 (2001). [CrossRef]
  3. H. Izumita, T. Sato, M. Tateda, and Y. Koyamada, “Brillouin OTDR employing optical frequency shifter using side-band generation technique with high-speed LN phase-modulator,” IEEE Photonics Technol. Lett. 8, 1674-1676 (1996). [CrossRef]
  4. J. Geng, S. Staines, M. Blake, and S. Jiang, “Distributed fiber temperature and strain sensor using coherent radio-frequency detection of spontaneous Brillouin scattering,” Appl. Opt. 46, 5928-5932 (2007). [CrossRef] [PubMed]
  5. D. Iida and F. Ito, “Bandwidth-reduced Brillouin optical time domain reflectometry using reference Brillouin scattering,” in Optical Fiber Communication Conference (Optical Society of America, 2009), paper OMP7.
  6. D. Iida and F. Ito, “Low bandwidth cost-effective Brillouin frequency sensing using reference Brillouin-scattered beam,” IEEE Photonics Technol. Lett. 20, 1845-1847 (2008). [CrossRef]
  7. D. Iida, N. Honda, H. Izumita, and F. Ito, “Design of identification fibers with individually assigned Brillouin frequency shifts for monitoring passive optical networks,” J. Lightwave Technol. 25, 1290-1297 (2007). [CrossRef]
  8. T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “Temperature and strain dependence of the power level and frequency for spontaneous Brillouin scattering in optical fibers,” Opt. Lett. 22, 787-789 (1997). [CrossRef] [PubMed]
  9. T. Kurashima, T. Horiguchi, and M. Tateda, “Thermal effects of Brillouin gain spectra in single-mode fibers,” IEEE Photonics Technol. Lett. 2, 718-720 (1990). [CrossRef]
  10. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).
  11. R. W. Boyd, K. Rzazewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514-5521 (1990). [CrossRef] [PubMed]
  12. A. L. Gaeta and R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44), 3205-3209 (1991). [CrossRef] [PubMed]
  13. T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical fiber time domain reflectometry,” IEICE Trans. Commun. E76-B, 382-390 (1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited