OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 22 — Aug. 1, 2009
  • pp: 4320–4328

Fluorescence cross sections of bioaerosols and suspended biological agents

Albert Manninen, Matti Putkiranta, Jaakko Saarela, Antti Rostedt, Tapio Sorvajärvi, Juha Toivonen, Marko Marjamäki, Jorma Keskinen, and Rolf Hernberg  »View Author Affiliations


Applied Optics, Vol. 48, Issue 22, pp. 4320-4328 (2009)
http://dx.doi.org/10.1364/AO.48.004320


View Full Text Article

Enhanced HTML    Acrobat PDF (543 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laser-induced fluorescence is used to investigate fluorescence properties of unwashed Bacillus thuringiensis and Bacillus subtilis spores, ovalbumin, and washed bacteriophage MS2. A fluorescence detector is calibrated to obtain absolute fluorescence cross sections. Fluorescence maps of biological aerosols and suspensions are measured at a wide excitation range from 210 to 419 nm and a wide detection range from 315 to 650 nm . The dominant features of the measured spectra are the amino acid peaks, having excitation maxima at 220 and 280 nm . The peaks are similar for the bacterial spores, both for aerosols and suspensions, whereas the peaks are shifted toward the shorter emission wavelengths for the suspended ovalbumin and MS2. Moreover, the fluorescence emission, excited above 320 nm is more intensive for the aerosols than the suspensions.

© 2009 Optical Society of America

OCIS Codes
(010.1100) Atmospheric and oceanic optics : Aerosol detection
(300.2530) Spectroscopy : Fluorescence, laser-induced

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: March 10, 2009
Revised Manuscript: June 23, 2009
Manuscript Accepted: July 7, 2009
Published: July 21, 2009

Virtual Issues
Vol. 4, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Albert Manninen, Matti Putkiranta, Jaakko Saarela, Antti Rostedt, Tapio Sorvajärvi, Juha Toivonen, Marko Marjamäki, Jorma Keskinen, and Rolf Hernberg, "Fluorescence cross sections of bioaerosols and suspended biological agents," Appl. Opt. 48, 4320-4328 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-22-4320


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Meselson, J. Guillemin, M. Hugh-Jones, A. Langmuir, I. Popova, A. Shelokov, and O. Yampolskaya, “The Sverdlovsk anthrax outbreak of 1979,” Science 266, 1202-1208 (1994). [CrossRef] [PubMed]
  2. P. M. Dull, K. E. Wilson, B. Kournikakis, E. A. S. Whitney, C. A. Boulet, J. Y. W. Ho, J. Ogston, M. R. Spence, M. M. McKenzie, M. A. Phelan, T. Popovic, and D. Ashford, “Bacillus anthracis aerosolization associated with a contaminated mail sorting machine,” Emerg. Infect. Dis. 8, 1044-1047(2002). [PubMed]
  3. B. Lighthart and B. T. Shaffer, “Viable bacterial aerosol particle size distributions in the midsummer atmosphere at an isolated location in the high desert chaparral,” Aerobiologia 11, 19-25 (1995). [CrossRef]
  4. M. L. Laucks, G. Roll, G. Schweigers, and E. J. Davis, “Physical and chemical (Raman) characterization of bioaerosols-pollen,” J. Aerosol Sci. 31, 307-319 (2000). [CrossRef]
  5. P. J. Wyatt, “Differential light scattering: a physical method for identifying living bacterial cells,” Appl. Opt. 7, 1879-1896(1968). [CrossRef] [PubMed]
  6. A. C. Samuels, J. F. C. DeLucia, K. L. McNesby, and A. W. Miziolek, “Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential,” Appl. Opt. 42, 6205-6209 (2003). [CrossRef] [PubMed]
  7. S. E. Thompson, N. S. Foster, T. J. Johnson, N. B. Valentine, and J. E. Amonette, “Identification of bacterial spores using statistical analysis of Fourier transform infrared photoacoustic spectroscopy data,” Appl. Spectrosc. 57, 893-899 (2003). [CrossRef] [PubMed]
  8. A. Manninen, M. Putkiranta, A. Rostedt, J. Saarela, T. Laurila, M. Marjamäki, J. Keskinen, and R. Hernberg, “Instrumentation for measuring fluorescence cross sections from airborne microsized particles,” Appl. Opt. 47, 110-115 (2008). [CrossRef] [PubMed]
  9. M. J. Sorrell, J. Tribble, L. Reinisch, J. A. Werkhaven, and R. H. Ossoff, “Bacteria identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med. 14, 155-163(1994). [CrossRef] [PubMed]
  10. M. S. Ammor, S. Delgado, P. Álvarez Martín, A. Margolles, and B. Mayo, “Reagentless identification of human bifidobacteria by intrinsic fluorescence,” J. Microbiol. Methods 69, 100-106(2007). [CrossRef] [PubMed]
  11. M. S. Ammor, “Recent advances in the use of intrinsic fluorescence for bacterial identification and characterization,” J. Fluoresc. 17, 455-459 (2007). [CrossRef] [PubMed]
  12. W. Hinds, Aerosol Technology (Wiley, 1982).
  13. T. Reponen, K. Willeke, S. Grinshpun, and A. Nevalainen, “Biological particle sampling,” in Aerosol Measurement: Principles, Techniques, and Applications, 2nd ed., P. A. Baron and K. Willeke, eds. (Wiley, 2001), Chap. 24, pp. 387-418.
  14. A. J. Westphal, P. B. Price, T. J. Leighton, and K. E. Wheeler, “Kinetics of size changes of individual Bacillus thuringiensis spores in response to changes in relative humidity,” Proc. Natl. Acad. Sci. USA 100, 3461-3466 (2003). [CrossRef] [PubMed]
  15. G. Chen, P. Nachman, R. G. Pinnick, S. C. Hill, and R. K. Chang, “Conditional-firing aerosol-fluorescence spectrum analyzer for individual airborne particles with pulsed 266 nm laser excitation,” Opt. Lett. 21, 1307-1309 (1996). [CrossRef] [PubMed]
  16. Y. S. Cheng, E. B. Barr, B. J. Fan, P. J. Hargis, J. P. J. Hargis, D. J. Rader, T. J. O'Hern, J. R. Torczynski, G. C. Tisone, B. L. Preppernau, S. A. Young, and R. J. Radloff, “Detection of bioaerosols using multiwavelength uv fluorescence spectroscopy,” Aerosol Sci. Technol. 30, 186-201 (1999). [CrossRef]
  17. G. W. Faris, R. A. Copeland, K. Mortelmans, and B. V. Bronk, “Spectrally resolved absolute fluorescence cross sections for Bacillus spores,” Appl. Opt. 36, 958-967 (1997). [CrossRef] [PubMed]
  18. R. G. Pinnick, S. C. Hill, S. Niles, D. M. Garvey, Y.-L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. V. Bronk, B. T. Chen, C.-S. Orr, and G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3, 221-239 (1999). [CrossRef]
  19. V. Sivaprakasam, A. L. Huston, C. Scotto, and J. D. Eversole, “Multiple UV wavelength excitation and fluorescence of bioaerosols,” Opt. Express 12, 4457-4466 (2004). [CrossRef] [PubMed]
  20. M. Putkiranta, Aerosol Physics Laboratory, Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland, A. Manninen, A. Rostedt, J. Saarela, T. Sorvajärvi, M. Marjamäki, R. Hernberg, and J. Keskinen are preparing a manuscript to be called “Fluorescence properties of biochemicals in aerosol particles and in solutions.”
  21. V. Agranovski, Z. Ristovski, M. Hargreaves, P. J. Blackall, and L. Morawska, “Performance evaluation of the UVAPS: influence of physiological age of airborne bacteria and bacterial stress,” J. Aerosol Sci. 34, 1711-1727 (2003). [CrossRef]
  22. A. Alimova, A. Katz, H. E. Savage, M. Shah, G. Minko, D. V. Will, R. B. Rosen, S. A. McCormick, and R. R. Alfano, “Native fluorescence and excitation spectroscopic changes in Bacillus subtilis and Staphylococcus aureus bacteria subjected to conditions of starvation,” Appl. Opt. 42, 4080-4087 (2003). [CrossRef] [PubMed]
  23. J. Kunnil, B. Swartz, and L. Reinisch, “Changes in the luminescence between dried and wet Bacillus spores,” Appl. Opt. 43, 5404-5409 (2004). [CrossRef] [PubMed]
  24. B. V. Bronk and L. Reinisch, “Variability of steady-state bacterial fluorescence with respect to growth conditions,” Appl. Spectrosc. 47, 436-440 (1993). [CrossRef]
  25. Y.-L. Pan, R. G. Pinnick, S. C. Hill, J. M. Rosen, and R. K. Chang, “Single-particle laser-induced-fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: measurements at New Haven, Connecticut, and Las Cruces, New Mexico,” J. Geophys. Res. 112, D24S19 (2007). [CrossRef]
  26. J. Bottiger, P. Deluca, E. Stuebing, and D. Vanreenen, “An ink jet aerosol generator,” J. Aerosol Sci. 29, S965-S966 (1998). [CrossRef]
  27. S. E. Dowd, S. D. Pillai, S. Wang, and M. Y. Corapcioglu, “Delineating the specific influence of virus isoelectric point and size on virus adsorption and transport through sandy soils,” Appl. Environ. Microbiol. 64, 405-410 (1998). [PubMed]
  28. V. Agranovski, Z. Ristovski, G. A. Ayoko, and L. Morawska, “Performance evaluation of the UVAPS in measuring biological aerosols: fluorescence spectra from NAD(P)H coenzymes and riboflavin,” Aerosol Sci. Technol. 38, 354-364 (2004). [CrossRef]
  29. R. Weichert, W. Klemm, K. Legenhausen, and C. Pawellek, “Determination of fluorescence cross-sections of biological aerosols,” Part. Part. Syst. Charact. 19, 216-222 (2002). [CrossRef]
  30. S. Duncan and J. Ho, “Estimation of viable spores in Bacillus atrophaeus (BG) particles of 1 to 9 μm size range,” Clean: Soil, Air, Water 36, 584-592 (2008). [CrossRef]
  31. F. J. Castellino and R. Barker, “Examination of the dissociation of multichain proteins in guanidine hydrochloride by membrane osmometry,” Biochemistry 7, 2207-2217 (1968). [CrossRef] [PubMed]
  32. R. A. Dalterio, W. H. Nelson, D. Britt, J. Sperry, D. Psaras, J. F. Tanguay, and S. L. Suib, “Steady-state and decay characteristics of protein tryptophan fluorescence from bacteria,” Appl. Spectrosc. 40, 86-90 (1986). [CrossRef]
  33. J. Kunnil, S. Sarasanandarajah, E. Chacko, and L. Reinisch, “Fluorescence quantum efficiency of dry Bacillus globigii spores,” Opt. Express 13, 8969-8979 (2005). [CrossRef] [PubMed]
  34. P. Jonsson, F. Kullander, M. Nordstrand, T. Tärnhage, P. Wästerby, and M. Lindgren, “Development of fluorescence-based point detector for biological sensing,” Proc. SPIE 5617, 60-74 (2004). [CrossRef]
  35. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006), pp. 529-567. [CrossRef]
  36. S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J.-P. Wolf, Y.-L. Pan, S. Holler, and R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85, 54-57 (2000). [CrossRef] [PubMed]
  37. Y.-L. Pan, S. C. Hill, J.-P. Wolf, S. Holler, R. K. Chang, and J. R. Bottiger, “Backward-enhanced fluorescence from clusters of microspheres and particles of tryptophan,” Appl. Opt. 41, 2994-2999 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited