OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 22 — Aug. 1, 2009
  • pp: 4354–4364

Measurement of signal intensity depth profiles in rat brains with cardiac arrest using wide-field optical coherence tomography

Manabu Sato, Molly Subhash Hrebesh, and Izumi Nishidate  »View Author Affiliations


Applied Optics, Vol. 48, Issue 22, pp. 4354-4364 (2009)
http://dx.doi.org/10.1364/AO.48.004354


View Full Text Article

Enhanced HTML    Acrobat PDF (1744 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Three-dimensional (3D) optical coherence tomography (OCT) images of rat brain taken through the thinned skull were measured using quadrature fringe wide-field OCT (QF WF OCT) with a period of 10 min for total measurement time of 210 min stopping blood flow due to cardiac arrest, in order to investigate the potential of OCT to monitor tissue viability in brains. First, spatial resolution degradation was evaluated with QF WF OCT to demonstrate that the axial resolution was 390 μm at a thickness of 1000 μm . After cardiac arrest, the signal intensity in depth profiles increased 2.7 times compared with that before cardiac arrest. The ratio of signal intensity after euthanasia with an injection of pentobarbital sodium salt to that before sharply increased for 20 min , with stationary values of 2 to 4 overall. The trends of time variations of each position were similar. However, each stationary value depended on the 3D position.

© 2009 Optical Society of America

OCIS Codes
(170.1610) Medical optics and biotechnology : Clinical applications
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: April 10, 2009
Manuscript Accepted: July 6, 2009
Published: July 22, 2009

Virtual Issues
Vol. 4, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Manabu Sato, Molly Subhash Hrebesh, and Izumi Nishidate, "Measurement of signal intensity depth profiles in rat brains with cardiac arrest using wide-field optical coherence tomography," Appl. Opt. 48, 4354-4364 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-22-4354


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  2. B.Bouma and J.Tearney, eds., Handbook of Optical Coherence Tomography (Marcel Dekker, 2002).
  3. K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex-vivo and in-vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J Biomed. Opt. 9, 719-724 (2004). [CrossRef] [PubMed]
  4. K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex-vivo and pathological human brain tissue with with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006 (2005). [CrossRef]
  5. Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama, “In vivo imaging of the rat cerebral microvesssels with optical coherence tomography,” Clin. Hemorheol. Microcirc. 31, 31-40 (2004). [PubMed]
  6. M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe “Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues,” Opt. Commun. 271, 573-580 (2007). [CrossRef]
  7. M. Lazebnik, D. L. Marks, K. Potgieter, R. Gillete, and S. A. Boppart, “Functional optical coherence tomography for detecting neural activity through scattering changes,” Opt. Lett. 28, 1218-1220 (2003). [CrossRef] [PubMed]
  8. R. D. Frostig, E. E. Lieke, D. Y. Ts'o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals, ” Proc. Natl. Acad. Sci. USA 87, 6082-6086 (1990). [CrossRef] [PubMed]
  9. R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202, 47-54 (2002). [CrossRef]
  10. R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Meth. 124, 83-92 (2003). [CrossRef]
  11. A. D. Aguirre, Y. Chen, J. G. Fujimoto, L. Ruvinskaya, A. Devor, and D. A. Boas, “Depth-resolved imaging of functional activation in the rat cerebral cortex using optical coherence tomography,” Opt. Lett. 31, 3459-3461 (2006). [CrossRef] [PubMed]
  12. V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, “In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography,” Opt. Lett. 31, 2308-2310 (2006). [CrossRef] [PubMed]
  13. S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Simultaneous measurement of changes in light absorption due to the reduction of cytochrome c oxidase and light scattering in rat brains during loss of tissue viability,” Appl. Opt. 47, 4164-4176 (2008). [CrossRef] [PubMed]
  14. E. Bordenave, E. Abraham, G. Jonusauskas, N. Tsurumachi, J. Oberle, C. Rulliere, P. E. Minot, M. Lassegues, and J. E. Surleve Bazeille, “Wide-field optical coherence tomography: imaging of biological tissues,” Appl. Opt. 41, 2059-2064(2002). [CrossRef] [PubMed]
  15. G. J. Terney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett. 20, 2258-2260 (1995). [CrossRef]
  16. T. R. Hillman and D. D. Sampson, “The effect of water dispersion and absorption on axial resolution in ultrahigh-resolution optical coherence tomography,” Opt. Express 13, 1860-1874(2005). [CrossRef] [PubMed]
  17. S. A. Masino, M. C. Kwon, Y. Dory, and R. D. Frostig, “Characterization of functional organization within rat barrel cortex using intrinsic signal optical imaging through a thinned skull,” Proc. Natl. Acad. Sci. USA 90, 9998-10002 (1993). [CrossRef] [PubMed]
  18. G.Paxinos ed., The Rat Nervous System (Elsevier, 2004).
  19. A. Ascenzi and C. Fabry, “Technique for dissection and measurement of refractive index of osteones,” J. Biophys. Biochem. Cytol. 6, 139-142 (1959). [CrossRef] [PubMed]
  20. S. W. Jeon, M. A. Shure, K. B. Baker, D. Hung, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography,” J. Neurosci. Meth. 154, 96-101 (2006). [CrossRef]
  21. X. Xu, R. K. Wang, and A. E. Haj, “Investigation of changes in optical attenuation of bone and neuronal cells in organ culture or three-dimensional constructs in vitro with optical coherence tomography: relevance to cytochrome oxidase monitoring,” Eur. Biophys. J. 32, 355-362 (2003). [CrossRef] [PubMed]
  22. F. Fijii, Y. Nodasaka, G. Nishimura, and M. Tamura, “Anoxia induces matrix shrinkage accompanied by an increase in light scattering in isolated brain mitochondria,” Brain Res. 999, 29-39 (2004). [CrossRef]
  23. A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood,” Proc. SPIE 3252, 70-82 (1998). [CrossRef]
  24. D. G. Eglinton, M. K. Johnson, A. J. Thomson, P. E. Gooding, and C. Greenwood, “Near-infrared magnetic and natural circular dichroism of cytochrome c oxidase,” Biochem. J. 191, 319-331 (1980). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited