OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 22 — Aug. 1, 2009
  • pp: 4397–4402

Rotation of birefringent particles in optical tweezers with spherical aberration

Min-Cheng Zhong, Jin-Hua Zhou, Yu-Xuan Ren, Yin-Mei Li, and Zi-Qiang Wang  »View Author Affiliations

Applied Optics, Vol. 48, Issue 22, pp. 4397-4402 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (305 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Birefringent particles rotate when trapped in elliptically polarized light. When an infinity corrected oil-immersion objective is used for trapping, rotation of birefringent particles in optical tweezers based on an infinity optical microscope is affected by the spherical aberration at the glass–water interface. The maximum rotation rate of birefringent particles occurs close to the coverslip, and the rotation rate decreases dramatically as the trapped depth increases. We experimentally demonstrate that spherical aberration can be compensated by using a finite-distance-corrected objective to trap and rotate the birefringent particles. It is found that the trapped depth corresponding to the maximum rotation rate is 50 μm , and the rotation rates at deep trapped depths are improved.

© 2009 Optical Society of America

OCIS Codes
(120.4570) Instrumentation, measurement, and metrology : Optical design of instruments
(140.7010) Lasers and laser optics : Laser trapping
(260.1440) Physical optics : Birefringence

ToC Category:
Lasers and Laser Optics

Original Manuscript: March 9, 2009
Revised Manuscript: June 29, 2009
Manuscript Accepted: July 3, 2009
Published: July 23, 2009

Virtual Issues
Vol. 4, Iss. 10 Virtual Journal for Biomedical Optics

Min-Cheng Zhong, Jin-Hua Zhou, Yu-Xuan Ren, Yin-Mei Li, and Zi-Qiang Wang, "Rotation of birefringent particles in optical tweezers with spherical aberration," Appl. Opt. 48, 4397-4402 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288-290 (1986). [CrossRef] [PubMed]
  2. A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92, 198104 (2004). [CrossRef] [PubMed]
  3. S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Picoliter viscometry using optically rotated particles,” Phys. Rev. E 76, 041507 (2007). [CrossRef]
  4. M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, and D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78, 547-549 (2001). [CrossRef]
  5. P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249-251 (2001). [CrossRef]
  6. S. Sato, M. Ishigure, and H. Inaba, “Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd:YAG laser beams,” Electron. Lett. 27, 1831-1832 (1991). [CrossRef]
  7. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348-350(1998). [CrossRef]
  8. A. T. O'Neil and M. J. Padgett, “Rotational control within optical tweezers by use of a rotating aperture,” Opt. Lett. 27, 743-745 (2002). [CrossRef]
  9. L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292,912-914 (2001). [CrossRef] [PubMed]
  10. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23, 1-3 (1998). [CrossRef]
  11. N. Ji, M. K. Liu, J. H. Zhou, Z. F. Lin, and S. T. Chui, “Radiation torque on a spherical birefringent particle in the long wave length limit: analytical calculation,” Opt. Express 13, 5192-5204 (2005). [CrossRef] [PubMed]
  12. M. K. Liu, N. Ji, Z. F. Lin, and S. T. Chui, “Radiation torque on a birefringent sphere caused by an electromagnetic wave,” Phys. Rev. E 72, 056610 (2005). [CrossRef]
  13. E. Higurashi, R. Sawada, and T. Ito, “Optically induced angular alignment of trapped birefringent micro-objects by linearly polarized light,” Phys. Rev. E 59, 3676-3681 (1999). [CrossRef]
  14. A. La Porta and M. D. Wang, “Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles,” Phys. Rev. Lett. 92, 190801 (2004). [CrossRef] [PubMed]
  15. M. Funk, S. J. Parkin, A. B. Stilgoe, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Constant power optical tweezers with controllable torque,” Opt. Lett. 34, 139-141 (2009). [CrossRef] [PubMed]
  16. P. C. Ke and M. Gu, “Characterization of trapping force in the presence of spherical aberration,” J. Mod. Opt. 45, 2159-2168 (1998). [CrossRef]
  17. S. N. S. Reihani, M. A. Charsooghi, H. R. Khalesifard, and R. Golestanian, “Efficient in-depth trapping with an oil-immersion objective lens,” Opt. Lett. 31, 766-768 (2006). [CrossRef] [PubMed]
  18. E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236, 145-150 (2004). [CrossRef]
  19. G. Sinclair, P. Jordan, J. Leach, M. J. Padgett, and J. Cooper, “Defining the trapping limits of holographical optical tweezers,” J. Mod. Opt. 51, 409-414 (2004). [CrossRef]
  20. Y. Roichman, A. Waldron, E. Gardel, and D. G. Grier, “Optical traps with geometric aberrations,” Appl. Opt. 45, 3425-3429 (2006). [CrossRef] [PubMed]
  21. K. C. Vermeulen, G. J. L. Wuite, G. J. M. Stienen, and C. F. Schmidt, “Optical trap stiffness in the presence and absence of spherical aberrations,” Appl. Opt. 45, 1812-1819 (2006). [CrossRef] [PubMed]
  22. M. Gu, P. C. Ke, and X. S. Gan, “Trapping force by a high numerical-aperture microscope objective obeying the sine condition,” Rev. Sci. Instrum. 68, 3666-3668 (1997). [CrossRef]
  23. P. Török, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation,” J. Opt. Soc. Am. A 12, 325-332 (1995). [CrossRef]
  24. C. J. R. Sheppard, M. Gu, K. Brain, and H. Zhou, “Influence of spherical aberration on axial imaging of confocal reflection microscopy,” Appl. Opt. 33, 616-624 (1994). [CrossRef] [PubMed]
  25. S. N. S. Reihani, H. R. Khalesifard, and R. Golestanian, “Measuring lateral efficiency of optical traps: the effect of tube length,” Opt. Commun. 259, 204-211 (2006). [CrossRef]
  26. C. J. R. Sheppard and M. Gu, “Aberration compensation in confocal microscopy,” Appl. Opt. 30, 3563-3568 (1991). [CrossRef] [PubMed]
  27. M. Rodriguez-Otazo, A. Augier-Calderin, J.-P. Galaup, J.-F. Lamère, and S. Fery-Forgues, “High rotation speed of single molecular microcrystals in an optical trap with elliptically polarized light,” Appl. Opt. 48, 2720-2730 (2009). [CrossRef] [PubMed]
  28. A. Rohrbach and E. H. K. Stelzer, “Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations,” Appl. Opt. 41, 2494-2507 (2002). [CrossRef] [PubMed]
  29. K. D. Wulff, D. G. Cole, and R. L. Clark, “Controlled rotation of birefringent particles in an optical trap,” Appl. Opt. 47, 6428-6433 (2008). [CrossRef] [PubMed]
  30. S. K. Mohanty, K. D. Rao, and P. K. Gupta, “Optical trap with spatially varying polarization: application in controlled orientation of birefringent microscopic particle(s),” Appl. Phys. B 80, 631-634 (2005). [CrossRef]
  31. H. Brenner, “Slow viscous rotation of an axisymmetric body within a circular cylinder of finite length,” Appl. Sci. Res. Sect. A 13, 81-120 (1964). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited