OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 22 — Aug. 1, 2009
  • pp: 4403–4413

Spatial-phase-modulation-based study of polyvinyl-alcohol/acrylamide photopolymers in the low spatial frequency range

Sergi Gallego, André Márquez, David Méndez, Stephan Marini, Augusto Beléndez, and Inmaculada Pascual  »View Author Affiliations


Applied Optics, Vol. 48, Issue 22, pp. 4403-4413 (2009)
http://dx.doi.org/10.1364/AO.48.004403


View Full Text Article

Enhanced HTML    Acrobat PDF (1232 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Photopolymers are appealing materials for the fabrication of diffractive optical elements (DOEs). We evaluate the possibilities of polyvinyl-alcohol/acrylamide-based photopolymers to store diffractive elements with low spatial frequencies. We record gratings with different spatial frequencies in the material and analyze the material behavior measuring the transmitted and the reflected orders as a function of exposition. We study two different compositions for the photopolymer, with and without a cross-linker. The values of diffraction efficiency achieved for both compositions make the material suitable to record DOEs with long spatial periods. Assuming a Fermi–Dirac-function-based profile, we fitted the diffracted intensities (up to the eighth order) to obtain the phase profile of the recorded gratings. This analysis shows that it is possible to achieve a phase shift larger than 2 π rad with steep edges in the periodic phase profile. In the case of the measurements in reflection, we have obtained information dealing with the surface profile, which show that it has a smooth shape with an extremely large phase-modulation depth.

© 2009 Optical Society of America

OCIS Codes
(160.4670) Materials : Optical materials
(160.5470) Materials : Polymers

ToC Category:
Materials

History
Original Manuscript: January 21, 2009
Revised Manuscript: June 22, 2009
Manuscript Accepted: July 3, 2009
Published: July 23, 2009

Citation
Sergi Gallego, André Márquez, David Méndez, Stephan Marini, Augusto Beléndez, and Inmaculada Pascual, "Spatial-phase-modulation-based study of polyvinyl-alcohol/acrylamide photopolymers in the low spatial frequency range," Appl. Opt. 48, 4403-4413 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-22-4403


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108-1114 (2000). [CrossRef]
  2. Sheridan, M. Downey, and F. T. O'Neill, “Diffusion based model of holographic grating formation in photopolymers: generalized non-local material responses,” J. Opt. A Pure Appl. Opt. 3, 477-488 (2001). [CrossRef]
  3. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Holographic Data Storage (Springer-Verlag, 2000).
  4. W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: the inPhase Technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003). [CrossRef]
  5. http://www.inphase-technologies.com/news/06_june19_RadTech.asp?subn=6_2
  6. D. A. Waldman, C. J. Butler, and D. H Raguin, “CROP holographic storage media for optical data storage at greater than 100 bits/μm2,” Proc. SPIE 5216, 10-25 (2003), [CrossRef]
  7. Y. Boiko, V. Slovjev, S. Calixto, and D. Lougnot, “Dry photopolymer films for computer-generated infrared radiation focusing elements,” Appl. Opt. 33, 787-793 (1994). [CrossRef] [PubMed]
  8. D. C. O'Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication and Test (SPIE, 2004).
  9. T. Sigitas, J. Giedrius, G. Asta, P. Arvydas, O. Vytautas, and A. Mindaugas, “Optical characterization of diffractive optical elements replicated in polymers,” J. Microlith. Microfab. Microsyst. 5, 807-814 (2006).
  10. C. Croutxe-Barghorn and D. Lougnot, “Use of self-processing dry photopolymers for the generation of relief optical elements: a photochemical study,” Pure Appl. Opt. 5, 811-825 (1996). [CrossRef]
  11. J. Turunen and F. Wyrowski, Diffractive Optics for Industrial and Commercial Applications (Akademie Verlag, 1997).
  12. P. Cottin, R. A. Lessard, É. J. Knystautas, and Sjoerd Roorda, “Polymer waveguides under ion implantation: optical and chemical aspects,” Nucl. Instrum. Methods Phys. Res. B 151, 97-100 (1999). [CrossRef]
  13. J. Neumann, K. S. Wieking, and D. Kip, “Direct laser writing of surface reliefs in dry, self-developing photopolymer films,” Appl. Opt. 38, 5418-5421 (1999). [CrossRef]
  14. X. T. Li, A. Natansohn, and P. Rochon, “Photoinduced liquid crystal alignment based on a surface relief grating in an assembled cell,” Appl. Phys. Lett. 74, 3791-3793 (1999). [CrossRef]
  15. D. Dantsker, J. Kumar, and S. K. Tripathy, “Optical alignment of liquid crystals,” J. Appl. Phys. 89, 4318-4325 (2001). [CrossRef]
  16. M. E. Potter, K. Goss, M. A. Neifeld, and R. W. Ziolkowski, “Nanostructure surface relief profiles for high-density optical data storage,” Opt. Commun. 253, 56-69 (2005). [CrossRef]
  17. K. Pavani, I. Naydenova, S. Martin, and V. Toal, “Photoinduced surface relief studies in an acrylamide-based photopolymer,” J. Opt. A Pure Appl. Opt. 9, 43-48 (2007). [CrossRef]
  18. K. Pavani, I. Naydenova, S. Martin, R. Jallapuram, R. G. Howard, and V. Toal, “Electro-optical switching of liquid crystal diffraction gratings by using surface relief effect in the photopolymer,” Opt. Commun. 273, 367-369 (2007). [CrossRef]
  19. C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11, 1835-1843 (2003). [CrossRef] [PubMed]
  20. S. Gallego, M. Ortuño, I. Pascual, C. Neipp, A. Márquez, and A. Beléndez, “Analysis of second and third diffracted orders in volume diffraction gratings recorded on photopolymers,” Phys. Scr. T T118, 58-60 (2005). [CrossRef]
  21. S. Gallego, A. Márquez, D. Méndez, M. Ortuño, C. Neipp, M. L. Alvarez, A. Beléndez, E. Fernández, and I. Pascual, “Real-time interferometric characterization of a PVA based photopolymer at the zero spatial frequency limit,” Appl. Opt. 46, 7506-7512 (2007). [CrossRef] [PubMed]
  22. S. Gallego, A. Márquez, D. Méndez, M. Ortuño, C. Neipp, M. L. Alvarez, A. Beléndez, E. Fernández, and I. Pascual, “Analysis of PVA/AA based photopolymers at the zero spatial frequency limit using interferometric methods,” Appl. Opt. 47, 2557-2563 (2008). [CrossRef] [PubMed]
  23. S. Gallego, A. Márquez, D. Méndez, C. Neipp, M. Ortuño, A. Beléndez, E. Fernández, and I. Pascual, “Direct analysis of monomer diffusion times in polyvinyl/acrylamide materials,” Appl. Phys. Lett. 92, 073306 (2008). [CrossRef]
  24. M. V. Kessels, M. E. Bouz, R. Pagan, and K. Heggarty, “Versatile stepper based maskless microlithography using a liquid crystal display for direct write of binary and multilevel microstructures,” J. Micro/Nanolith. MEMS MOEMS 6, 033002 (2007). [CrossRef]
  25. A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos and M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays,” Opt. Eng. 40, 2558-2564 (2001). [CrossRef]
  26. A. Márquez, J. Campos, M. J. Yzuel, I. Pascual, A. Fimia, and A. Beléndez, “Production of computer-generated phase holograms using graphic devices: application to correlation filters,” Opt. Eng. 39, 1612-1619 (2000). [CrossRef]
  27. F. T. O'Neill, J. R. Lawrence, and J. T. Sheridan, “Improvement of holographic recording material using aerosol sealant,” J. Opt. A Pure Appl. Opt. 3, 20-25 (2001) [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited