OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 22 — Aug. 1, 2009
  • pp: 4449–4457

Retroreflective shadowgraph technique for large-scale flow visualization

Michael J. Hargather and Gary S. Settles  »View Author Affiliations

Applied Optics, Vol. 48, Issue 22, pp. 4449-4457 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1329 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A simple and robust retroreflective shadowgraph technique is presented for the visualization of refractive phenomena across a broad range of scales in space and time. Originally developed by Edgerton, it is improved here with techniques for producing coincident shadowgram illumination. The optical components required to construct a simple system are discussed, including the retroreflective screen material. The optical sensitivity of the system is explored for visualization of shock waves and turbulent eddies. The shadowgraph system is used here to visualize experiments performed in the laboratory, on a military test range, and in an open field.

© 2009 Optical Society of America

OCIS Codes
(000.2170) General : Equipment and techniques
(120.5710) Instrumentation, measurement, and metrology : Refraction

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: May 28, 2009
Manuscript Accepted: June 30, 2009
Published: July 27, 2009

Michael J. Hargather and Gary S. Settles, "Retroreflective shadowgraph technique for large-scale flow visualization," Appl. Opt. 48, 4449-4457 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. S. Settles, Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media (Springer-Verlag, 2001).
  2. G. S. Settles, T. P. Grumstrup, L. J. Dodson, J. D. Miller, and J. A. Gatto, “Full-scale high-speed schlieren imaging of explosions and gunshots,” Proc. SPIE 5580, 5580-174 (2005) .
  3. G. E. A. Meier, “Hintergrund schlierenmessverfahren,” Deutsche Patentanmeldung DE 199 42 856 A1 (1999).
  4. H. E. Edgerton, Electronic Flash, Strobe (MIT Press, 1970).
  5. H. E. Edgerton, “Shockwave photography of large subjects in daylight,” Rev. Sci. Instrum. 29, 171-172 (1958). [CrossRef]
  6. J. K. Biele, “Point-source spark shadowgraphy at the historic birthplace of supersonic transportation--a historical note,” Shock Waves 13, 167-177 (2003). [CrossRef]
  7. S. P. Parthasarathy, Y. I. Cho, and L. H. Back, “Wide-field shadowgraphy of tip vortices from a helicopter rotor,” AIAA J. 25, 64-70 (1987). [CrossRef]
  8. T. R. Norman and J. S. Light, “Rotor tip vortex geometry measurements using the wide-field shadowgraph technique,” J. Am. Helicopter Soc. 32, 40-50 (1987). [CrossRef]
  9. A. Bagai and J. G. Leishman, “Improved wide-field shadowgraph set-up for rotor wake visualization,” J. Am. Helicopter Soc. 37, 86-92 (1992). [CrossRef]
  10. G. E. A. Meier, “Computerized background-oriented schlieren,” Exp. Fluids 33, 181-187 (2002).
  11. L. Venkatakrishnan and G. E. A. Meier, “Density measurements using the background oriented schlieren technique,” Exp. Fluids 37, 237-247 (2004). [CrossRef]
  12. H. Richard and M. Raffel, “Principle and applications of the background oriented schlieren (bos) method,” Meas. Sci. Technol. 12, 1576-1585 (2001). [CrossRef]
  13. M. J. Hargather and G. S. Settles, “Natural-background-oriented schlieren,” Exp. Fluids DOI:10.1007/s00348-009-0709-3 (2009).
  14. 3M Industrial Adhesives and Tapes Division, 900 Bush Avenue, St. Paul, Minnesota, USA.
  15. S. Winburn, A. Baker, and J. G. Leishman, “Angular response properties of retroreflective screen materials used in wide-field shadowgraphy,” Exp. Fluids 20, 227-229(1996). [CrossRef]
  16. H. Kleine, J. M. Dewey, K. Ohashi, T. Mizukaki, and K. Takayama, “Studies of the TNT equivalence of silver azide charges,” Shock Waves 13, 123-138 (2003). [CrossRef]
  17. M. J. Hargather and G. S. Settles, “Optical measurement and scaling of blasts from gram-range explosive charges,” Shock Waves 17, 215-223 (2007). [CrossRef]
  18. M. J. Hargather, “Scaling, characterization and application of gram-range explosive charges to blast testing of materials,” Ph.D. thesis (The Pennsylvania State University, 2008).
  19. J. M. Dewey, “Explosive flows: shock tubes and blast waves,” in Handbook of Flow Visualization, 1st ed. (Hemisphere, 1989), Chap. 29, pp. 481-497.
  20. R. Varosh, “Electric detonators: EBW and EFI,” Propellants Explosives Pyrotechnics 21, 150-154 (1996). [CrossRef]
  21. P. W. Cooper, Explosives Engineering (Wiley-VCH, 1996).
  22. H. Schardin, “Die schlierenverfahren und ihre anwendungen,” Ergeb. Exakten Naturwiss. 20, 303-439 (1942). [CrossRef]
  23. G. S. Settles and L. J. Dodson, “Full-scale schlieren visualization of supersonic bullet and muzzle blast from firing a .30-06 rifle,” J. Visualiz. Comput. Animation 8, 6 (2005).
  24. G. S. Settles, “The Penn State full-scale schlieren system,” in Proceedings 11th International Symposium on Flow Visualization, T. Mueller and I. Grant, eds. (IOP2004), paper 76.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited