OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 22 — Aug. 1, 2009
  • pp: 4496–4500

Calculation of the coupling coefficient in step index glass optical fibers

Svetislav Savović and Alexandar Djordjevich  »View Author Affiliations


Applied Optics, Vol. 48, Issue 22, pp. 4496-4500 (2009)
http://dx.doi.org/10.1364/AO.48.004496


View Full Text Article

Enhanced HTML    Acrobat PDF (382 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method for calculating the coupling coefficient in step-index multimode optical fibers is verified for glass fibers by comparison to published data and to an analytical solution for the steady-state mode distribution. The coefficient that the method calculates is used to determine the state of mode coupling along the fiber, including the coupling length for achieving the equilibrium mode distribution when measurement of fiber characteristics (such as linear attenuation or bandwidth) becomes meaningful.

© 2009 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2400) Fiber optics and optical communications : Fiber properties

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: July 2, 2009
Manuscript Accepted: July 15, 2009
Published: July 28, 2009

Citation
Svetislav Savović and Alexandar Djordjevich, "Calculation of the coupling coefficient in step index glass optical fibers," Appl. Opt. 48, 4496-4500 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-22-4496


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Dugas and G. Maurel, “Mode-coupling processes in polymethyl methacrylate-core optical fibers,” Appl. Opt. 31, 5069-5079 (1992). [CrossRef] [PubMed]
  2. M. Eve and J. H. Hannay, “Ray theory and random mode coupling in an optical fibre waveguide, I.,” Opt. Quantum Electron. 8, 503-508 (1976). [CrossRef]
  3. J. Arrue, G. Aldabaldetreku, G. Durana, J. Zubía, I. Garcés, and F. Jiménez, “Design of mode scramblers for step-index and graded-index plastic optical fibers,” J. Lightwave Technol. 23, 1253-1260 (2005. [CrossRef]
  4. W. A. Gambling, D. P. Payne, and H. Matsumura, “Mode conversion coefficients in optical fibers,” Appl. Opt. 14, 1538-1542 (1975). [CrossRef] [PubMed]
  5. D. Gloge, “Optical power flow in multimode fibers,” Bell Syst. Tech. J. 51, 1767-1783 (1972).
  6. M. Rousseau and L. Jeunhomme, “Numerical solution of the coupled-power equation in step index optical fibers,” IEEE Trans. Microwave Theory Tech. 25, 577-585 (1977). [CrossRef]
  7. A. Djordjevich and S. Savović, “Investigation of mode coupling in step index plastic optical fibers using the power flow equation,” IEEE Photon. Technol. Lett. 12, 1489-1491 (2000). [CrossRef]
  8. S. Savović and A. Djordjevich, “Optical power flow in plastic clad silica fibers,” Appl. Opt. 41, 7588-7591 (2002). [CrossRef]
  9. S. Savović and A. Djordjevich, “Solution of mode coupling in step-index optical fibers by the Fokker-Planck equation and the Langevin equation,” Appl. Opt. 41, 2826-2830 (2002). [CrossRef] [PubMed]
  10. M. A. Losada, J. Mateo, I. Garcés, J. Zubía, J. A. Casao, and P. Peréz-Vela, “Analysis of strained plastic optical fibers,” IEEE Photon. Technol. Lett. 16, 1513-1515 (2004). [CrossRef]
  11. M. A. Losada, I. Garcés, J. Mateo, I. Salinas, J. Lou, and J. Zubía, “Mode coupling contribution to radiation losses in curvatures for high and low numerical aperture plastic optical fibers,” J. Lightwave Technol. 20, 1160-1164 (2002). [CrossRef]
  12. J. Zubía, G. Durana, G. Aldabaldetreku, J. Arrue, M. A. Losada, and M. Lopez-Higuera, “New method to calculate mode conversion coefficients in Si multimode optical fibers,” J. Lightwave Technol. 21, 776-781 (2003). [CrossRef]
  13. S. Savović and A. Djordjevich, “Method for calculating the coupling coefficient in step index optical fibers,” Appl. Opt. 46, 1477-1481 (2007). [CrossRef] [PubMed]
  14. K. Kitayama and M. Ikeda, “Mode coupling measurements in optical fibers,” Appl. Opt. 17, 3979-3983 (1978). [CrossRef] [PubMed]
  15. L. Jeunhomme, M. Fraise, and J. P. Pocholle, “Propagation model for long step-index optical fibers,” Appl. Opt. 15, 3040-3046 (1976). [CrossRef] [PubMed]
  16. S. Savović and A. Djordjevich, “Mode coupling in strained and unstrained step-index plastic optical fibers,” Appl. Opt. 45, 6775-6780 (2006). [CrossRef] [PubMed]
  17. S. Savović and A. Djordjevich, “Influence of numerical aperture on mode coupling in step-index plastic optical fibers,” Appl. Opt. 43, 5542-5546 (2004). [CrossRef] [PubMed]
  18. J. D. Anderson, Computational Fluid Dynamics (McGraw-Hill, 1995).
  19. A. F. Garito, J. Wang, and R. Gao, “Effects of random perturbations in plastic optical fibers,” Science 281, 962-967 (1998). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited