OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 22 — Aug. 1, 2009
  • pp: E13–E23

Reconfigurable and adaptive photonic networks for high-performance computing systems

Avinash Kodi and Ahmed Louri  »View Author Affiliations

Applied Optics, Vol. 48, Issue 22, pp. E13-E23 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1434 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



As feature sizes decrease to the submicrometer regime and clock rates increase to the multigigahertz range, the limited bandwidth at higher bit rates and longer communication distances in electrical interconnects will create a major bandwidth imbalance in future high-performance computing (HPC) systems. We explore the application of an optoelectronic interconnect for the design of flexible, high-bandwidth, reconfigurable and adaptive interconnection architectures for chip-to-chip and board-to-board HPC systems. Reconfigurability is realized by interconnecting arrays of optical transmitters, and adaptivity is implemented by a dynamic bandwidth reallocation (DBR) technique that balances the load on each communication channel. We evaluate a DBR technique, the lockstep (LS) protocol, that monitors traffic intensities, reallocates bandwidth, and adapts to changes in communication patterns. We incorporate this DBR technique into a detailed discrete-event network simulator to evaluate the performance for uniform, nonuniform, and permutation communication patterns. Simulation results indicate that, without reconfiguration techniques being applied, optical based system architecture shows better performance than electrical interconnects for uniform and nonuniform patterns; with reconfiguration techniques being applied, the dynamically reconfigurable optoelectronic interconnect provides much better performance for all communication patterns. Based on the performance study, the reconfigured architecture shows 30 % 50 % increased throughput and 50 % 75 % reduced network latency compared with HPC electrical networks.

© 2009 Optical Society of America

OCIS Codes
(200.0200) Optics in computing : Optics in computing
(200.4650) Optics in computing : Optical interconnects

Original Manuscript: December 2, 2008
Revised Manuscript: April 17, 2009
Manuscript Accepted: April 26, 2009
Published: June 10, 2009

Avinash Kodi and Ahmed Louri, "Reconfigurable and adaptive photonic networks for high-performance computing systems," Appl. Opt. 48, E13-E23 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. E. Culler, J. P. Singh, and A. Gupta, Parallel Computer Architecture: a Hardware/Software Approach (Morgan Kaufmann, 1999).
  2. J. Kash, C. Baks, S. Gowda, L. Graham, A. Hajimiri, C. Haymes, J. Jewell, D. Kucharski, D. Kuchta, Y. Kwark, P. Pepeljugoski, J. Schaub, C. Schuster, J. Tierno, and H. Wu, “Bringing optics inside the box: recent progress and future trends,” presented at the 16th Annual Meeting of the IEEE/LEOS (2003), p. 23.
  3. E. Mohammed, A. Alduino, T. Thomas, H. Braunisch, D. Lu, J. Heck, A. Liu, I. Young, B. Barnett, G. Vandentop, and R. Mooney, “Optical interconnect system integration for ultra-short-reach applications,” Intel Technol. J. 8, 114-127(2004).
  4. A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kutcha, and M. B. Ritter, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Dev. 49, 755-775 (2005). [CrossRef]
  5. T. S. D. Huang, A. Landin, R. Lytel, and H. L. Davidson, “Optical interconnects: out of the box forever?,” IEEE J. Sel. Top. Quantum Electron. 9, 614-623 (2003). [CrossRef]
  6. N. Kirman, M. Kirman, R. Dokania, J. Martínez, A. Apsel, M. Watkins, and D. Albonesi, “Leveraging optical technology in future bus-based chip multiprocessors,” in Proceedings of the 39th International Symposium on Microarchitecture (IEEE, 2006).
  7. A. Shacham, B. Small, O. Liboiron-Ladouceur, and K. Bergman, “A fully implemented 12×12 data vortex optical packet switching interconnection network,” J. Lightwave Technol. 23, 3066-3075 (2005). [CrossRef]
  8. “Closing the gap between peak and achievable performance in high performance computing,” Tech. Rep. WP-0020404, CRAY Incorporated, Seattle, Washington (2004).
  9. D. E. Lenoski and W.-D. Weber, Scalable Shared-Memory Multiprocessing (Morgan Kaufmann, 1995).
  10. D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88, 728-749 (2000). [CrossRef]
  11. J. Collet, D. Litaize, J. V. Campenhut, C. Jesshope, M. Desmulliez, H. Thienpont, J. Goodman, and A. Louri, “Architectural approach to the role of optics in monoprocessor and multiprocessor machines,” Appl. Opt. 39, 671-682 (2000). [CrossRef]
  12. A. V. Krishnamoorthy and K. W. Goossen, “Optoelectronic-VLSI: photonics integrated with VLSI circuits,” IEEE J. Sel. Top. Quantum Electron. 4, 899-912 (1998). [CrossRef]
  13. B. Lemoff, M. E. Ali, G. Panotopoulos, G. M. Flower, B. Madhavan, A. F. J. Levi, and D. W. Dolfi, “MAUI: enabling fiber-to-the-processor with parallel multiwavelength optical interconnects,” J. Lightwave Technol. 22, 2043-2054 (2004). [CrossRef]
  14. A. V. Krishnamoorthy, K. W. Goossen, L. M. F. Chirovsky, R. G. Rozier, P. Chandramani, S. P. Hui, J. Lopata, J. A. Walker, and L. A. D'Asaro, “16×16 VCSEL array flip-chip bonded to CMOS VLSI circuit,” IEEE Photon. Technol. Lett. 12, 1073-1075 (2000). [CrossRef]
  15. A. K. Kodi and A. Louri, “RAPID: reconfigurable and scalable all-photonic interconnect for distributed shared memory multiprocessors,” J. Lightwave Technol. 22, 2101-2110 (2004). [CrossRef]
  16. A. K. Kodi and A. Louri, “RAPID for high-performance computing systems: architecture and performance evaluation,” Appl. Opt. 45, 6326-6334 (2006). [CrossRef] [PubMed]
  17. A. K. Kodi and A. Louri, “A new technique for dynamic bandwidth re-allocation in optically high-performance computing systems,” in Proceedings of the 14th Annual IEEE Symposium on Hot Interconnects (IEEE, 2006), pp. 31-36..
  18. A. K. Kodi and A. Louri, “Power aware bandwidth reconfigurable optical interconnects for HPC systems,” in Proceedings of the 21st IEEE International Parallel and Distributed Symposium (IPDPS'07) (IEEE, 2007), p. 81. [CrossRef]
  19. W. J. Dally and B. Towles, Principles and Practices of Interconnection Networks (Morgan Kaufmann, 2004).
  20. P. Dowd, J. Perreault, J. Chu, D. Hoffmeister, R. Minnich, D. Burns, F. Hady, Y.-J. Chen, M. Dagenais, and D. Stone, “LIGHTNING: network and systems architecture,” J. Lightwave Technol. 14, 1371-1387 (1996). [CrossRef]
  21. P. Krishnamurthy, R. Chamberlain, and M. Franklin, “Dynamic reconfiguration of an optical interconnect,” presented at 36th Annual Simulation Symposium (Society for Modeling and Simulation International, 2003).
  22. C. M. Qiao, R. Melhem, D. Chiarulli, and S. Levitan, “Dynamic reconfiguration of optically interconnected networks with time-division multiplexing,” J. Parallel Distrib. Comput. 22, 268-278 (1994). [CrossRef]
  23. X. Chen, L.-S. Peh, G.-Y. Wei, Y.-K. Huang, and P. Pruncal, “Exploring the design space of power-aware opto-electronic networked systems,” in Proceedings of the 11th International Symposium on High-Performance Computer Architecture (HPCA-11) (IEEE, 2005), pp. 120-131.
  24. J. R. Jump, “Yacsim reference manual,” Rice University; available at http://www-ece.rice.edu/ rppt.html (1993).
  25. F. Petrini, E. Frachtenberg, A. Hoisie, and S. Coll, “Performance evaluation of the quadrics interconnection network,” Cluster Comput. 6, 125-142 (2003). [CrossRef]
  26. S. S. Mukherjee, P. Bannon, S. Lang, A. Spink, and D. Webb, “The Alpha 21364 network architecture,” IEEE Micro 22, 26-35 (2002). [CrossRef]
  27. M. Galles, “Spider: a high-speed network interconnect,” IEEE Micro 17, 34-39 (1997). [CrossRef]
  28. Mellanox Technologies, http://www.mellanox.com/.
  29. A. Kodi and A. Louri, “Optisim: a system simulation methodology in optically interconnected HPC systems,” IEEE Micro 28, 22-36 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited