OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 22 — Aug. 1, 2009
  • pp: E24–E34

Robust approach to regularize an isochromatic fringe map

Philip Siegmann, Francisco Díaz-Garrido, and Eann A. Patterson  »View Author Affiliations

Applied Optics, Vol. 48, Issue 22, pp. E24-E34 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (915 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The computation of a continuous map of isochromatic fringe order from an isochromatic phase map or relative retardation based on a photoelastic fringe pattern is a difficult task, particularly when the direction of the principal stress is ambiguous. This happens in most experiments and introduces abrupt changes in the slope of the computed relative retardation map. We present a novel regularized phase-tracking method that at each pixel chooses the unambiguous relative retardation value. This unambiguous relative retardation map is wrapped, however the unwrapping is straightforward and fast using the already known techniques. With the presented method we have been able to process successfully complex experimental data with several isotropic points, high fringe density and low resolution, as is shown in a number of examples.

© 2009 Optical Society of America

OCIS Codes
(100.0100) Image processing : Image processing
(100.5070) Image processing : Phase retrieval

Original Manuscript: December 11, 2008
Revised Manuscript: May 12, 2009
Manuscript Accepted: June 5, 2009
Published: June 24, 2009

Philip Siegmann, Francisco Díaz-Garrido, and Eann A. Patterson, "Robust approach to regularize an isochromatic fringe map," Appl. Opt. 48, E24-E34 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. W. Dally and W. F. Riley, Experimental Stress Analysis, 3rd ed. (McGraw-Hill, 1991).
  2. G. Cloud, Optical Methods of Engineering Analysis (Cambridge University Press, 1998).
  3. F. Zandman, S. Redner, and J. W. Dally, Photoelastic Coatings (Iowa State University Press, 1977).
  4. E. A. Patterson and Z. F. Wang, “Towards full-field automated photoelastic analysis of complex components,” Strain 27, 49-53 (1991). [CrossRef]
  5. K. Ramesh, Digital Photoelasticity (Springer, 2000). [CrossRef]
  6. E. A. Patterson, “Digital photoelasticity: principles, practice and potential,” Strain 38, 27-39 (2002). [CrossRef]
  7. M. Ramji and K. Ramesh, “Whole field evaluation of stress components in digital phtoelasticity: issue, implementation and application,” Opt. Lasers Eng. 46, 257-271 (2008). [CrossRef]
  8. C. J. Christopher, M. N. James, E. A. Patterson, and K. F. Tee, “A quantitative evaluation of fatigue crack shielding forces using photoelasticity,” Eng. Fract. Mech. 75, 4190-4199(2008). [CrossRef]
  9. J. W. Hobbs, R. L. Burguete, P. Heyes, and E. A. Patterson, “A photoelastic analysis of crescent-shaped cracks in bolts,” J. Strain Anal. Eng. Des. 36 (1), 93-99 (2001). [CrossRef]
  10. H. Aben, J. Anton, and A. Errapart, “Modern photoelasticity for residual stress measurement in glass,” Strain 44, 40-48 (2008). [CrossRef]
  11. J. Anton, A. Errapart, H. Aben, and L. Ainola, “A discrete algorithm of integrated photoelasticity for axisymetric problems,” Exp. Mech. 48, 613-620 (2008). [CrossRef]
  12. L. Ainola and A. Hillar, “On the generalized Wertheim law in integrated photoelasticity,” J. Opt. Soc. Am. A 25, 1843-1849(2008).
  13. M. L. L. Wijerathne, K. Oguni, and M. Hori, “Stress field tomography based on 3D photoelasticity,” J. Mech. Phys. Solids 56 (3), 1065-1085 (2008). [CrossRef]
  14. A. Curtis, L. Sokolikova-Csaderova, and G. Aitchison, “Measuring cell forces by a photoelastic method,” Biophys. J. 92, 2255-2261 (2007). [CrossRef]
  15. M. Paturzo, L. Aiello, F. Pignatiello, P. Ferraro, P. Natale, M. Angelis, and S. Nicola, “Investigation of optical birefringence at ferroelectric domain wall in LiNbO3 by phase-shift polarimetry,” Appl. Phys. Lett. 88, 151918 (2006). [CrossRef]
  16. T. Spalton, R. A. Tomlinson, A. E. Garrard, and S. B. M. Beck, “Streaming birefringence-a step forward,” Appl. Mech. Mater. 13-14, 23-28 (2008). [CrossRef]
  17. S. J. Haake, Z. F. Wang, and E. A. Patterson, “2D and 3D separation of stresses using automated photoelasticity,” Exp. Mech. 36 (3), 269-276 (1996). [CrossRef]
  18. D. Rajamohan, “Hyperstatic method of photoelasticity,” Exp. Mech. 48, 693-696 (2008). [CrossRef]
  19. C. W. Chang, P. H. Chen, and H. S. Lien, “Separation of photoelastic principal tresses by analytical evaluation and digital image processing,” J. Mech. 25 (1), 19-25 (2009). [CrossRef]
  20. C. Buckberry and D. Tower, “Automatic analysis of isochromatic and isoclinic fringes in photoelasticity using phase measuring techniques,” Meas. Sci. Technol. 6, 1227-1235(1995). [CrossRef]
  21. P. Pinit and E. Umezaki, “Digital whole field analysis of isoclinic parameter in photoelasticity by four-step color phase-shifting technique,” Opt. Lasers Eng. 45, 795-807 (2007). [CrossRef]
  22. A. Ajovalasit, G. Petrucci, and M. Scafidi, “Phase shifting photoelasticity in white light,” Opt. Lasers Eng. 45, 596-611(2007). [CrossRef]
  23. Z. F. Wang and E. A. Patterson, “Use of phase-stepping with demodulation and fuzzy sets for birefringence measurement,” Opt. Lasers Eng. 22, 91-104 (1995). [CrossRef]
  24. N. Plouzennec, J. C. Depuré, and A. Lagarde, “Whole field determination of isoclinic and isochromatic parameters,” Exp. Techniques 23, 30-33 (1999). [CrossRef]
  25. J. A. Quiroga and A. González-Cano, “Separation of isoclinics and isochromatics from photoelastic data with a regularized phase-tracking technique,” Appl. Opt. 39, 2931-2940 (2000). [CrossRef]
  26. A. K. Asundi, MATLAB for Photomechanics: a Primer(Elsevier, 2002).
  27. P. Siegmann, D. Backman, and E. A. Patterson, “A robust approach to demodulating and unwrapping phase-stepped photoelastic data,” Exp. Mech. 45 (3), 278-289 (2005). [CrossRef]
  28. M. Ramji and K. Ramesh, “Adaptive quality guided phase unwrapping algorithm for whole-field digital photoelastic parameter estimation of complex models,” Strain doi: 10.1111/j.1475-1305.2008.00431.x. [CrossRef]
  29. Z. Lei, H. Yun, Y. Zhao, Y. Xing, and X. Pan, “Study of the shear transfer in Al/epoxy joint by digital photoelasticity,” Opt. Lasers Eng 47, 701-707 (2009). [CrossRef]
  30. J. Villa, J. A. Quiroga, and E. Pascual, “Determination of isoclinics in photoelasticity with a fast regularized estimator,” Opt. Lasers Eng. 46, 236-242 (2008). [CrossRef]
  31. M. Servin, J. L. Marroquin, and F. J. Cuevas, “Demodulation of a single interferogram by use of a two-dimensional regularized phase-tracking technique,” Appl. Opt. 36, 4540-4548(1997). [CrossRef] [PubMed]
  32. J. A. Quiroga, E. Pascual, and J. Villa-Hernandez, “Robust isoclinic calculation for automatic analysis of photoelastic fringe pattern,” Proc. SPIE 7155, 715530 (2008). [CrossRef]
  33. E. A. Patterson, P. Brailly, and M. Taroni, “High frequency quantitative photoelasticity applied to jet engine components,” Exp. Mech. 46, 661-668 (2006). [CrossRef]
  34. MATLAB Function Reference at www.mathworks.com/access/helpdesk/help/techdoc/ref/atan2.html.
  35. J. A. Quiroga and A. González-Cano. “Phase measuring algorithm for extraction of isochromatics of photoelastic fringe pattern,” Appl. Opt. 36, 8397-8402 (1997). [CrossRef]
  36. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping (Wiley, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited