OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 22 — Aug. 1, 2009
  • pp: E35–E44

Quaternary Galois field adder based all-optical multivalued logic circuits

Tanay Chattopadhyay, Chinmoy Taraphdar, and Jitendra Nath Roy  »View Author Affiliations

Applied Optics, Vol. 48, Issue 22, pp. E35-E44 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (979 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Galois field (GF) algebraic expressions have been found to be promising choices for reversible and quantum implementation of multivalued logic. For the first time to our knowledge, we developed GF(4) adder multivalued (four valued) logic circuits in an all-optical domain. The principle and possibilities of an all-optical GF(4) adder circuit are described. The theoretical model is presented and verified through numerical simulation. The quaternary inverter, successor, clockwise cycle, and counterclockwise cycle gates are proposed with the help of the all-optical GF(4) adder circuit. In this scheme different quaternary logical states are represented by different polarized light. A terahertz optical asymmetric demultiplexer interferometric switch plays an important role in this scheme.

© 2009 Optical Society of America

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(060.7140) Fiber optics and optical communications : Ultrafast processes in fibers
(200.1130) Optics in computing : Algebraic optical processing
(200.3760) Optics in computing : Logic-based optical processing
(200.4660) Optics in computing : Optical logic
(230.5440) Optical devices : Polarization-selective devices

Original Manuscript: December 1, 2008
Revised Manuscript: June 6, 2009
Manuscript Accepted: June 9, 2009
Published: July 9, 2009

Tanay Chattopadhyay, Chinmoy Taraphdar, and Jitendra Nath Roy, "Quaternary Galois field adder based all-optical multivalued logic circuits," Appl. Opt. 48, E35-E44 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. C. Smith, “The prospects for multivalued logic: a technology and applications view,” IEEE Trans. Comput. C-30, 1160-1179 (1984).
  2. Y. Yasuda, Y. Tokuda, S. Zaima, K. Pak, T. Nakamura, and A. Yoshida, “Realization of quaternary logic circuits by n-channel MOS devices,” IEEE J. Solid-State Circuits SSC-21, 162-168(1986) [CrossRef]
  3. A. A. S. Awwal, M. A. Karim, and A. K. Cherri, “Polarization-encoded optical shadow-casting scheme: design of multioutput trinary combinational logic units,” Appl. Opt. 26, 4814-4818(1987) [CrossRef]
  4. S. Liu, C. Li, J. Wu, and Y. Lin, “Optoelectronic multiple-valued logic implementation,” Opt. Lett. 14, 713-715(1989). [CrossRef]
  5. J. Yi, H. He, and Y. Lu, “Ternary optical computer architecture,” Phys. Scr. T118, 98-101 (2005).
  6. C. S. Vikram and H. J. Caulfield, “Position-sensing detector for logical operations using incoherent light,” Opt. Eng. 44, 115201 (2005).
  7. T. Chattopadhyay and J. N. Roy, “Polarization encoded all-optical quaternary multiplexer and demultiplexer -a proposal,” Optik (Jena) , doi:10.1016/j.ijleo.2008.03.030 [In press]. [CrossRef]
  8. T. Chattopadhyay and J. N. Roy, “All-optical conversion scheme: binary to quaternary and quaternary to binary number,” Opt. Laser Technol. 41, 289-294 (2009).
  9. T. Chattopadhyay and J. N. Roy, “Polarization encoded TOAD based all-optical quaternary Literals,” Optik (Jena) [doi: 10.1016/j.ijleo.2008.09.014] [CrossRef]
  10. J. N. Roy and D. K. Gayen, “Integrated all-optical logic and arithmetic operations with the help of a TOAD-based interferometer device--alternative approach,” Appl. Opt. 46, 5304-5310 (2007). [CrossRef]
  11. M. H. A. Khan and M. A. Perkowski, “GF(4) based synthesis of quaternary reversible/ quantum logic circuits,” in Proceedings of the International Symposia on Multiple-Valued Logic (IEEE Computer Society, 2007).
  12. N. A. Khader and P. Siy, “Inversion/division in Galois field using multiple-valued logic,” in Proceedings of the International Symposia on Multiple-Valued Logic (IEEE Computer Society, 2007)
  13. M. H. A. Khan, N. K. Siddika, and M. A. Perkowski, “Minimization of quaternary Galois field sum of products expression for multi-output quaternary logic function using quaternary Galois field decision diagram,” in Proceedings of the International Symposia on Multiple-Valued Logic (IEEE Computer Society, 2008), pp. 125-130. [CrossRef]
  14. J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5, 787-790 (1993).
  15. M. Eiselt, W. Pieper, and H. G. Weber, “SLALOM: semiconductor laser amplifier in a loop mirror,” J. Lightwave Technol. 13, 2099-2112 (1995). [CrossRef]
  16. B. C. Wang, V. Baby, W. Tong, L. Xu, M. Friedman, R. J. Runser, I. Glesk, and P. R. Prucnal, “A novel fast optical switch based on two cascaded terahertz optical asymmetric demultiplexers (TOAD),” Opt. Express 10, 15-23 (2002).
  17. Y. K. Huang, I. Glesk, R. Shankar, and P. R. Prucnal, “Simultaneous all-optical 3R regeneration scheme with improved scalability using TOAD,” Opt. Express 14, 10339-10344 (2006). [CrossRef]
  18. Y. J. Jung, S. Lee, and N. Park, “All-optical 4-bit gray code to binary coded decimal converter,” Proc. of SPIE 6890, 68900S (2008). [CrossRef]
  19. Z. Y. Shen and L. L. Wu, “Reconfigurable optical logic unit with a terahertz optical asymmetric demultiplexer and electro-optic switches,” Appl. Opt. 47, 3737-3742 (2008). [CrossRef]
  20. D. K. Gayen and J. N. Roy, “All-optical arithmetic unit with the help of terahertz optical asymmetric demultiplexer-based tree architecture,” Appl. Opt. 47, 933-943 (2008). [CrossRef]
  21. J. N. Roy, G. K. Maity, D. K. Gayen, and T. Chattopadhyay, “Terahertz optical asymmetric demultiplexer based tree-net architecture for all-optical conversion scheme from binary to its other 2n radix based form,” Chin. Opt. Lett. 6, 536-540(2008).
  22. T. Yang, C. Shu, and C. Lin, “Depolarization technique for wavelength conversion using four-wave mixing in a dispersion-flattened photonic crystal fiber,” Opt. Express 13, 5409-5415 (2005).
  23. T. Chattopadhyay and J. N. Roy, “An all-optical technique for a binary-to-quaternary encoder and a quaternary-to-binary decoder,” J. Opt. A 11, 075501(2009), . [CrossRef]
  24. T. Houbavlis and K. E. Zoiros, “Numerical simulation of semiconductor optical amplifier assisted Sagnac gate and investigation of its switching characteristics,” Opt. Eng. 43, 1622-1627 (2004).
  25. K. E. Zoiros, R. Chasioti, C. S. Koukourlis, and T. Houbavlis, “On the output characteristics of a semiconductor optical amplifier driven by an ultrafast optical time division multiplexing pulse train,” Optik (Jena) 118, 134-146 (2007). [CrossRef]
  26. K. E. Zoiros, T. Houbavlis, and M. Kalyvas, “Ultra-high speed all-optical shift registers and their applications in OTDM networks,” Opt. Quantum Electron. 36 (11), 1005-1053 (2004). [CrossRef]
  27. K. E. Zoiros, G. Papadopopoulos, T. Houbavlis, and G. T. Kanellos, “Theoretical analysis and performance investigation of ultrafast all-optical Boolean xor gate with semiconductor optical amplifier-assisted Sagnac interferometer,” Opt. Commun. 258, 114-134 (2006). [CrossRef]
  28. W. Li, M. Zhang, and P. Ye, “Simulation of an all-optical xor gate with a semiconductor optical amplifier Mach-Zehnder interferometer sped up by a continuous-wave assistant light,” J. Opt. Networking 4, 524-530 (2005).
  29. G. P. Agrawal, Applications of Nonlinear Fibre Optics (Academic , India [an imprint of Elsevier, 2001]).
  30. A. Mecozzi and M. Shtaif, “The statistics of polarization dependent loss in optical communication systems,” IEEE Photon. Technol. Lett. 14, 313-315 (2002).
  31. S. Yamashita and K. Hotate, “Polarization-independent depolarizers for highly coherent light using Faraday rotator mirrors,” J. Lightwave Technol. 15, 900-905 (1997). [CrossRef]
  32. L. E. Nelson, T. N. Nielson, and H. Kogelnik, “Observation of PMD-induced coherent crosstalk in polarization-multiplexed transmission,” IEEE Photon. Techol. Lett. 13, 738-740 (2001).
  33. J. M. Tang and K. A. Shore, “Strong picosecond optical pulse propagating in semiconductor optical amplifiers at transparency,” IEEE J. Quantum Electron. 34, 1263-1269 (1998). [CrossRef]
  34. T. Houbavlis and K. E. Zoiros, “SOA-assisted Sagnac switch and investigation of its roadmap from 10 to 40 GHz,” Opt. Quantum Electron. 35, 1175-1203 (2003). [CrossRef]
  35. T. Houbavlis and K. E. Zoiros, “Ultrafast pattern-operated all-optical Boolean xor with semiconductor optical amplifier-assisted Sagnac switch,” Opt. Eng. 42, 3415-3416 (2003).
  36. S. M. Reddy, “Easily testable realization for logic functions,” IEEE Trans. Comput. C-21, 1183-1188 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited