OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 23 — Aug. 10, 2009
  • pp: 4536–4544

Mechanical and thermoelastic characteristics of optical thin films deposited by dual ion beam sputtering

Eda Çetinörgü, Bill Baloukas, Oleg Zabeida, Jolanta E. Klemberg-Sapieha, and Ludvik Martinu  »View Author Affiliations


Applied Optics, Vol. 48, Issue 23, pp. 4536-4544 (2009)
http://dx.doi.org/10.1364/AO.48.004536


View Full Text Article

Enhanced HTML    Acrobat PDF (778 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Mechanical and thermoelastic properties of optical films are very important to ensure the performance of optical interference filters and optical coating systems. We systematically study the growth and the mechanical and thermoelastic characteristics of niobium oxide ( Nb 2 O 5 ), tantalum oxide ( Ta 2 O 5 ), and silicon dioxide ( Si O 2 ) thin films prepared by dual ion beam sputtering. First, we investigate the stress (σ), hardness (H), reduced Young’s modulus ( E r ), and scratch resistance. Second, we focus on the methodology and assessment of the coefficient of thermal expansion (CTE) and Poisson’s ratio (ν) using the two-substrate method. For the high refractive index films, namely, Nb 2 O 5 ( n a t 550 nm = 2.30 ) and Ta 2 O 5 ( n at 550 nm = 2.13 ), we obtained H 6 GPa , E r 125 GPa , CTE = 4.9 × 10 6 ° C 1 , ν = 0.22 , and H 7 GPa , E r 133 GPa , CTE = 4.4 × 10 6 ° C 1 , and ν = 0.27 , respectively. In comparison, for Si O 2 ( n at 550 nm = 1.48 ), these values are H 9.5 GPa , E r 87 GPa , CTE = 2.1 × 10 6 ° C 1 , and ν = 0.11 . Correlations between the growth conditions (secondary beam ion energy and ion current), the micro structure, and the film properties are discussed.

© 2009 Optical Society of America

OCIS Codes
(310.6860) Thin films : Thin films, optical properties
(310.6870) Thin films : Thin films, other properties

ToC Category:
Thin Films

History
Original Manuscript: March 4, 2009
Revised Manuscript: June 29, 2009
Manuscript Accepted: June 30, 2009
Published: August 3, 2009

Citation
Eda Çetinörgü, Bill Baloukas, Oleg Zabeida, Jolanta E. Klemberg-Sapieha, and Ludvik Martinu, "Mechanical and thermoelastic characteristics of optical thin films deposited by dual ion beam sputtering," Appl. Opt. 48, 4536-4544 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-23-4536


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. L. Tien, C. C. Jaing, C. C. Lee, and K. P. Chuang, “Simultaneous determination of the thermal expansion coefficient and the elastic modulus of Ta2O5 thin film using phase shifting interferometry,” J. Mod. Opt. 47, 1681-1691 (2000).
  2. C. C. Lee, J. C. Hsu, and D. H. Wong, “Low loss niobium oxide films deposited by ion beam sputter deposition,” Opt. Quantum Electron. 32, 327-337 (2000). [CrossRef]
  3. S. V. J. Chandra, G. M.Rao, and S. Uthanna, “Heat treatment induced structural and optical properties of rf magnetron sputtered tantalum oxide films,” Cryst. Res. Technol. 42, 290-294 (2007). [CrossRef]
  4. C.-T. Wei and H.-P. D. Shieh, “Stresses and temperature stability of dense wavelength division multiplexing filters prepared by reactive ion-assisted e-gun evaporation,” Jpn. J. Appl. Phys. 44, 7577-7581 (2005).
  5. S. Venkataraj, R. Drese, O. Kappertz, R. Jayavel, and M. Wutting, “Characterization of niobium oxide films prepared by reactive dc magnetron sputtering,” Phys. Status Solidi A 188, 1047-1058 (2001). [CrossRef]
  6. J. P. Masse, H. Szymanowski, O. Zabeida, A. Amassian, J. E. Klemberg-Sapieha, and L. Martinu, “Stability and effect of annealing on the optical properties of plasma deposited Ta2O5 and Nb2O5 films,” Thin Solid Films 515, 1674-1682 (2006). [CrossRef]
  7. H. Demiryont, J. R. Sites, and K. Geib, “Effects of oxygen content on the optical properties of tantalum oxide films deposited by ion beam sputtering,” Appl. Opt. 24, 490-495(1985). [CrossRef]
  8. K. Kukli, M. Ritala, M. Leskela, and R. Lappalainen, “Niobium oxide thin films grown by atomic layer epitaxy,” Chem. Vap. Deposition 4, 29-34 (1998).
  9. L. Martinu and D. Poitras, “Plasma deposition of optical films and coatings: a review,” J. Vac. Sci. Technol. A 18, 2619-2645 (2000). [CrossRef]
  10. J. J. Cuomo, S. M. Rossnagel, and H. R. Kaufman, Handbook of Ion Beam Processing Technology (Noyes, 1989), Part III, p. 170.
  11. W. Kulisch, D. Gilliland, G. Ceccone, H. Rauscher, L. Sirghi, P. Colpo, and F. Rossi, “Ion beam deposition of tantalum pentoxide thin film at room temperature,” J. Vac. Sci. Technol. A 26, 991-995 (2008). [CrossRef]
  12. M. Cevro and G. Carter, “Ion beam and dual ion beam sputter deposition of tantalum oxide films,” Opt. Eng. 34, 596-606(1995).
  13. C. Chaneliere, J. L. Autran, R. A. B. Devine, and B. Balland, “Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications,” Mater. Sci. Eng. R22, 269-322 (1998).
  14. C. C. Lee, C. L. Tien, and J. C. Hsu, “Internal stress and optical properties of Nb2O5 thin films deposited by ion beam sputtering,” Appl. Opt. 41, 2043-2047 (2002). [CrossRef]
  15. B. M. Gatehouse and A. D. Wadsley, “The crystal structure of the high temperature form of niobium pentoxide,” Acta Crystallogr. 17, 1545-1554 (1964). [CrossRef]
  16. R. P. Vinci and J. J. Vlassak, “Mechanical behavior of thin films,” Ann. Rev. Mater. Sci. 26, 431-462 (1996).
  17. C. C. Lee, C. L. Tien, W. S. Sheu, and C. C. Jaing, “An apparatus for the measurement of internal stress and thermal expansion coefficient of metal oxide films,” Rev. Sci. Instrum. 72, 2128-2133 (2001). [CrossRef]
  18. G. E. Jellison Jr. and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371-373 (1996). [CrossRef]
  19. W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res. 7, 1564-1583 (1992). [CrossRef]
  20. J. E. Klemberg-Sapieha, J. Oberste-Berghaus, L. Martinu, R. Blacker, I. Stevenson, G. Sadkhin, D. Morton, S. McEldowney, R. Klinger, P. J. Martin, N. Court, S. Dligatch, M. Gross, and R. P. Netterfield, “Mechanical characteristics of optical coatings prepared by various techniques: a comparative study,” Appl. Opt. 43, 2670-2679 (2004). [CrossRef]
  21. R. Thielsch, A. Gatto, and N. Kaiser, “Mechanical stress and thermal-elastic properties of oxide coatings for use in the deep ultraviolet spectral region,” Appl. Opt. 41, 3211-3217(2002). [CrossRef]
  22. Y. Okada and Y. Tokumaru, “Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K,” J. Appl. Phys. 56, 314-320(1984). [CrossRef]
  23. S. Adachi, “GaAs, AlAs, and AlxGa1−xAs: material parameters for use in research and device applications,” J. Appl. Phys. 58, R1-R29 (1985). [CrossRef]
  24. S. C. Gujrathi, “Depth profiles of thin films and interfaces by the elastic recoil detection technique,” in Metallization of Polymers, E. Sacher, J. J. Pireaux, and S. P. Kowalczyk, eds., American Chemical Society Symposium Series Vol. 440 (American Chemical Society, 2005), p. 88.
  25. G. Boudreault, R. G. Elliman, R. Grötzschel, S. C. Gujrathi, C. Jeynes, W. N. Lennard, E. Rauhala, T. Sajavaara, H. Timmers, Y. Q. Wang, and T. D. M. Weijers, “Round robin: measurement of H implantation distributions in Si by elastic recoil detection,” Nucl. Instrum. Methods Phys. Res. B 222, 547-566(2004).
  26. B. Hunsche, M. Vergöhl, H. Neuhauser, F. Klose, B. Szyszka, and T. Matthee, “Effect of deposition parameters on optical and mechanical properties of Mf- and DC- sputtered Nb2O5 films,” Thin Solid Films 392, 184-190(2001). [CrossRef]
  27. C. L. Tien and C. C. Lee, “Effects of ion energy on internal stress and optical properties of ion beam sputtering Ta2O5 films,” J. Mod. Opt. 50, 2755-2763 (2003).
  28. C. A. Davis, “A simple model for the formation of compressive stress in thin films by ion bombardment,” Thin Solid Films 226, 30-34 (1993). [CrossRef]
  29. G. Carter, “Peening in ion-assisted thin-film deposition: a generalized model,” J. Phys. D 27, 1046-1055 (1994).
  30. J. A. Thornton and D. W. Hoffman, “The influence of discharge current on the intrinsic stress in Mo films deposited using cylindrical and planar magnetron sputtering sources,” J. Vac. Sci. Technol. A 3, 576-579 (1985). [CrossRef]
  31. C. C. Fang, F. Jones, and V. Prasada “Effect of gas impurity and ion bombardment on stresses in sputter-deposited thin films: a molecular-dynamics approach,” J. Appl. Phys. 74, 4472-4482 (1993). [CrossRef]
  32. G. N. Strauss, “Mechanical stress in optical coatings,” in Optical Interference Coatings, N. Kaiser and H. K. Pulker, eds. (Springer, 2003), p. 207.
  33. C. L. Tien, C. C. Lee, Y. L. Tsai, and W. S. Sun, “Determination of the mechanical properties of thin films by digital phase shifting interferometry,” Opt. Commun. 198, 325-331(2001). [CrossRef]
  34. T. C. Chen, C. J. Chu, C. H. Ho, C. C. Wu, and C. C. Lee, “Determination of stress-optical and thermal-optical coefficients of Nb2O5 thin film material,” J. Appl. Phys. 101, 043513(2007). [CrossRef]
  35. H. Choosuwan, R. Guo, and A. S. Bhalla, “Negative thermal expansion behavior in single crystal and ceramic of Nb2O5-based compositions,” J. Appl. Phys. 91, 5051-5054 (2002). [CrossRef]
  36. C. M. Weyant, K. T. Faber, J. D. Almer, and J. V. Guiheen, “Residual stress and microstructural evolution in tantalum oxide coatings on silicon nitride,” J. Am. Ceram. Soc. 88, 2169-2176 (2005).
  37. M. Moldovan, C. M. Weyant, D. L. Johnson, and K. T. Faber, “Tantalum oxide coatings as candidate environmental barriers,” J. Thermal Spray Technol. 13, 51-56 (2004).
  38. S. Wu, H. M. Chan, and M. P. Harmer, “Compositional tailoring of the thermal expansion coefficient of tantalum (V) oxide,” J. Mater Sci. 41, 689-695 (2006).
  39. T. Chudoba, N. Schwarzer, and F. Richter, “Determination of elastic properties of thin films by indentation measurements with a spherical indenter,” Surf. Coat. Technol. 127, 9-17 (2000). [CrossRef]
  40. R.C.Weast,, ed. “Physical constants of inorganic compounds,” in CRC Handbook of Chemistry and Physics, 88th ed. (CRC Press, 2007-2008), Section 4

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited