OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 23 — Aug. 10, 2009
  • pp: 4545–4561

Detection and characterization of chemical vapor fugitive emissions by nonlinear optimal estimation: theory and simulation

Christopher M. Gittins  »View Author Affiliations

Applied Optics, Vol. 48, Issue 23, pp. 4545-4561 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (2018 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper addresses detection and characterization of chemical vapor fugitive emissions in a non scattering atmosphere by processing of remotely-sensed long-wavelength infrared spectra. The analysis approach integrates a parameterized signal model based on the radiative transfer equation with a statistical model for the infrared background. The maximum likelihood model parameter values are defined as those that maximize a Bayesian posterior probability and are estimated using a Gauss–Newton algorithm. For algorithm performance evaluation we simulate observation of fugitive emissions by augmenting plume-free measured spectra with synthetic plume signatures. As plumes become optically thick, the Gauss–Newton algorithm yields significantly more accurate estimates of chemical vapor column density and significantly more favorable plume detection statistics than clutter-matched-filter-based and adaptive-subspace-detector-based plume characterization and detection.

© 2009 Optical Society of America

OCIS Codes
(280.1120) Remote sensing and sensors : Air pollution monitoring
(300.6340) Spectroscopy : Spectroscopy, infrared
(150.1135) Machine vision : Algorithms
(110.4234) Imaging systems : Multispectral and hyperspectral imaging
(280.4991) Remote sensing and sensors : Passive remote sensing
(010.5620) Atmospheric and oceanic optics : Radiative transfer

ToC Category:
Remote Sensing and Sensors

Original Manuscript: December 12, 2008
Revised Manuscript: April 20, 2009
Manuscript Accepted: June 2, 2009
Published: August 4, 2009

Christopher M. Gittins, "Detection and characterization of chemical vapor fugitive emissions by nonlinear optimal estimation: theory and simulation," Appl. Opt. 48, 4545-4561 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. D. Rodgers, “Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation,” Rev. Geophys. Space Phys. 14, 609-624 (1976). [CrossRef]
  2. J. R. Eyre, “Inversion of cloudy satellite sounding radiances by nonlinear optimal estimation. I: Theory and simulation for TOVS,” Q. J. R. Meteorol. Soc. 115, 1001-1026 (1989). [CrossRef]
  3. W. L. Smith, H. M. Woolf, and H. E. Revercomb, “Linear simultaneous solution for temperature and absorbing constituent profiles from radiance spectra,” Appl. Opt. 30, 1117-1123(1991). [CrossRef]
  4. X. L. Ma, T. J. Schmit, and W. L. Smith, “A nonlinear physical retrieval algorithm--its application to the GOES-8/9 Sounder,” J. Appl. Meteorol. 38, 501-513 (1999). [CrossRef]
  5. X. L. Ma, Z. Wan, C. C. Moeller, W. P. Menzel, L. E. Gumley, and Y. Zhang, “Retrieval of geophysical parameters from moderate resolution imaging spectroradiometer thermal infrared data: evaluation of a two-step physical algorithm,” Appl. Opt. 39, 3537-3550 (2000). [CrossRef]
  6. T. Steck and T. von Clarmann, “Constrained profile retrieval applied to the observation mode of the Michelson interferometer for passive atmospheric sounding,” Appl. Opt. 40, 3559-3571 (2001). [CrossRef]
  7. S. W. Seeman, J. Li, W. P. Menzel, and L. E. Gumley, “Operational retrieval of atmospheric temperature, moisture, and ozone from MODIS infrared radiances,” J. Appl. Meteorol. 42, 1072-1091 (2003). [CrossRef]
  8. A. Hayden, E. Niple, and B. Boyce, “Determination of trace-gas amounts in plumes by the use of orthogonal digital filtering of thermal-emission spectra,” Appl. Opt. 35, 2802-2809 (1996). [CrossRef]
  9. C. C. Funk, J. Theiler, D. A. Roberts, and C. C. Borel, “Clustering to improve matched filter detection of weak gas plumes in hyperspectral thermal imagery,” IEEE Trans. Geosci. Remote Sens. 39, 1410-1419 (2001). [CrossRef]
  10. N. B. Gallagher, B. M. Wise, and D. M. Sheen, “Estimation of trace concentration-pathlength in plumes for remote sensing applications from hyperspectral images,” Anal. Chim. Acta 490, 139-152 (2003). [CrossRef]
  11. E. M. O'Donnell, D. W. Messinger, C. Salvaggio, and J. R. Schott, “Identification and detection of gaseous effluents from hyperspectral imagery using invariant algorithms,” Proc. SPIE 5425, 573-582 (2004). [CrossRef]
  12. D. Manolakis and F. M. D'Amico, “A taxonomy of algorithms for chemical vapor detection with hyperspectral imaging spectroscopy,” Proc. SPIE 5795, 125-133 (2005). [CrossRef]
  13. A. Vallières, A. Villemaire, M. Chamberland, L. Belhumeur, V. Farley, J. Giroux, and J.-F. Legault, “Algorithms for chemical detection, identification and quantification for thermal hyperspectral imagers,” Proc. SPIE 5995, 59950G-1 (2005).
  14. R. M. Goody and Y. L. Yung, Atmospheric Radiation: Theoretical Basis (Oxford University, 1989), Chap. 2, pp. 46.
  15. C. D. Rodgers, Inverse Methods for Atmospheric Sounding: Theory and Practice (World Scientific, 2000), Chap. , pp. 30.
  16. M. L. Polak, J. L. Hall, and K. C. Herr, “Passive Fourier-transform infrared spectroscopy of chemical plumes: an algorithm for quantitative interpretation and real-time background removal,” Appl. Opt. 34, 5406-5412 (1995). [CrossRef]
  17. D. Flanigan, “Prediction of the limits of detection of hazardous vapors by passive infrared with the use of MODTRAN,” Appl. Opt. 35, 6090-6098 (1996). [CrossRef]
  18. R. Harrig, “Passive remote sensing of pollutant clouds by Fourier-transform infrared spectroscopy: signal-to-noise ratio as a function of spectral resolution,” Appl. Opt. 43, 4603-4610 (2004). [CrossRef]
  19. S. A. Clough, M. J. Iacono, and J.-L. Moncet, “Line-by-line calculations of atmospheric fluxes and cooling rates: application for water vapor,” J. Geophys. Res. 97, 15761-15785 (1992).
  20. D. M. Sheen, N. B. Gallagher, S. W. Sharpe, K. K. Anderson, and J. F. Shultz, “Impact of background and atmospheric variability on infrared hyperspectral chemical detection sensitivity,” Proc. SPIE 5093, 218-229 (2003). [CrossRef]
  21. R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical Analysis, 5th ed. (Prentice Hall, 2002), Chap. 9, pp. 477-532.
  22. M. E. Tipping and C. M. Bishop, “Probabilistic principal components analysis,” J. R. Stat. Soc. B 61, Part 3, 611-622(1999). [CrossRef]
  23. S. Kay, Fundamentals of Statistical Signal Processing: Volume 1, Estimation Theory (Prentice-Hall, 1993), p. 40.
  24. S. Kraut and L. L. Scharf, “The CFAR adaptive subspace detector is a scale invariant GLRT,” IEEE Trans. Signal Process. 47, 2538-2541 (1999). [CrossRef]
  25. S. Kraut, L. L. Scharf, and L. T. McWhorter, “Adaptive subspace detectors,” IEEE Trans. Signal Process. 49, 1-16 (2001). [CrossRef]
  26. W. J. Marinelli, C. M. Gittins, B. R. Cosofret, T. E. Ustun, and J. O. Jensen, “Development of the AIRIS-WAD multispectral sensor for airborne standoff chemical agent and toxic industrial chemical detection,” in Proceedings of the Meetings of the Mil. Sens. Symp. Specialty Groups on Passive Sensors; Camouflage, Concealment, and Deception; Detectors; and Materials, ADA444225 (DTIC, 2005).
  27. W. J. Marinelli, C. M. Gittins, A. H. Gelb, and B. D. Green, “Tunable Fabry-Perot etalon-based long-wavelength infrared imaging spectrometer,” Appl. Opt. 38, 2594-2604 (1999). [CrossRef]
  28. S. W. Sharpe, T. J. Johnson, R. L. Sams, P. M. Chu, G. C. Roderick, and P. A. Johnson, “Gas-phase databases for quantitative infrared spectrometry,” Appl. Spectrosc. 58, 1452-1461 (2004). [CrossRef]
  29. D. E. Tyler, “A distribution-free M-estimator of multivariate scatter,” Ann. Stat. 15, 234-251 (1987). [CrossRef]
  30. H. Cox and R. Pitre, “Robust DMR and multi-rate adaptive beamforming,” in Signals, Systems & Computers, 1997. Conference Record of the Thirty-First Asilomar Conference on, Vol. 1 (IEEE, 1997), pp. 920-924, http://dx.doi.org/10.1109/ACSSC.1997.680577
  31. M. Wax and T. Kailath, “Detection of signals by information theoretic criteria,” IEEE Trans. Acoust. Speech Signal Process. 33, pp. 387-392 (1985). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited